Пошаговое объяснение:
Основное свойство пропорции:
Произведение крайних членов равно произведению средних членов.
А сейчас понятнее:
Например, возьмем пропорцию - a : b = c : d - крайние члены я подчеркнула.Значит средние члены будут b и c.(логично)
Пропорция это равенство отношений(Отношение - это частное двух чисел)
Как я поняла, в пропорции записано отношение, но сейчас объясню зачем нужны кр. и ср. члены пропорции..Опять возьму эту пропорцию - a : b = c : d - теперь мы умножаем,но никак не делим средние и крайние члены пропорции. a · d = c · b.Дальше просто считаем.Приступим к номеру...↓↓↓
№ 762.
1) 4 1/2 : 3 1/4 = 36 : 26
4 1/2 · 26 = 3 1/4 · 36
3 1/4 · 36 = 127
4 1/2 · 26 = 127
127 = 127
2) 3 : 7,5 = 2 1/2 : 6 1/4
7,5 · 2,5 = 3 · 6,25
18,75 = 18,75
Думаю,принцип понятен:)
Пошаговое объяснение:
В основном используется табличный интеграл от степенной функции, да ещё от синуса.
\int\limits {x^n} \, dx = \frac{1}{n+1} x^{n+1} +C \\ \\ \int\limits {sinx} \, dx = -cosx + C
1а. f(x)=2-x
\int\limits {(2-x)} \, dx = 2* \frac{1}{0+1} x^{0+1} - \frac{1}{1+1}x^{1+1} + C = 2x - \frac{1}{2} x^2 +C
2б. f(x)=x^4 - sin x
\int\limits {(x^4 - sin x)} \, dx = \frac{1}{4+1}x^{4+1} -(-cosx) +C = \frac{1}{5} x^5+ cosx +C
2в. f(x)= 2/ x^3
\int\limits { \frac{2}{x^3} } \, dx = \int\limits { 2x^{-3} \, dx = 2* \frac{1}{-3+1} x^{-3+1} + C = -x^{-2} + C = - \frac{1}{x^2} + C