Пусть ABCM - данная пирамида, О - центр правильного треугольника, тогда
OM=3, угол AHС=120 градусов
Н - точка такая, что AH перпендикулярно HB
(по формуле)
синус угол наклона бокового ребра к плоскости основания=
произведению ctg(180\n)*котангенс половины двугранного угла при основании
sin угол OAM=ctg(180\3)*ctg(угол BHA\2)
sin угол OAM=ctg 60*ctg 60=1\3
С прямоугольного треугольника OAM
sin угол OAM=OM\AM
AM=1\3*3=1
OA=корень(3^2-1^2)=2*корень(2)=R
Vk=1\3*pi*R^2*h
Vk=2\3*pi*8*3=16*pi
ответ:16*pi
Пусть в первый день велосипедист был в пути х часов, тогда во второй день – (5 – х) часов. За первый день он преодолел расстояние: (20 • х) км, а во второй день: 15 • (5 – х) км.
составим уравнение:
20 • х – 15 • (5 – х) = 30;
20 • х – 75 + 15 • х = 30;
35 • х = 30 + 75;
35 • х = 105;
х = 105 : 35 = 3 (ч) – был в пути в первый день;
5 – х = 5 – 3 = 2 (ч) – был в пути во второй день.
Вычислим расстояние, которое проехал велосипедист за два дня: 20 • 3 + 15 • 2 = 60 + 30 = 90 (км).
ответ: за два дня велосипедист проехал 90 км.
поставь как луший если не сложно