Метод переброски.
Рассмотрим метод, который позволяет решать подавляющее большинство полных квадратных уравнений устно, аналогично решению приведенных квадратных уравнений с теоремы Виета.
Рассмотрим полное квадратное уравнение
ax2 + bx + c = 0; (1)
Для его решения мы вначале используем формулу дискриминанта:
D = b2 – 4ac и если D > 0, то с формул корней полного квадратного уравнения находим x1и x2:
x1,2 = (-b ± √D) / 2a.
Теперь рассмотрим другое полное приведенное квадратное уравнение
y2 + by + ac = 0. (2)
Первый коэффициент у этого уравнения равен 1, а второй коэффициент равен b и совпадает со вторым коэффициентом уравнения (1). Свободный член уравнения (2) равен ac и получен как произведение первого коэффициента и свободного члена уравнения (1) (то есть можно сказать, что a «перебросилось» к c).
Найдем дискриминант и корни квадратного уравнения (2): D = b2 – 4ac, т.о. он полностью совпадает с дискриминантом уравнения (1).
Корни уравнения (2): y1,2 = (-b ± √D) / 2.
Если теперь корни x1,2 сравнить с корнями y1,2, то легко видеть, что корни уравнения (1) можно получить из корней уравнения (2) делением на a.
x=2:1/3
x=6
б)
2-7х>2
-7x=0
x=0
в)6(у-1.5)-3.4>4у-2.4
6у-9-3.4>4у-2.4
2у>10
у=5
2)
(b+4)/2> 5-2b/3
3(b+4)> 2(5-2b)
3b+12> 10-4b
7b -2
b=-2/7