1. Пусть
,
. Заметим, что
и
монотонно убывают, значит,
функция монотонная, следовательно, имеет не более одного корня. Из этого следует, что у уравнения
не более двух корней.
2. Заметим, что если
является решением, то
тоже. Очевидно, что
является осью симметрии (причем единственной) графика
. Иначе говоря, пара
исчерпывает все решения указанного уравнения, если таковые имеются. Значит, достаточно потребовать, чтобы
. Итак,
пробегает область значения рассматриваемой функции, кроме того
, которому соответствует
(это
).
3. Функция непрерывна, поэтому достаточно посмотреть на наименьшее и наибольшее значения. Наименьшее значение достигается в 0 (то есть значение
, а наибольшее в
. Получаем ответ: 

1) f(0) = ln(0+1)=ln1=0
2)f"(x)=1/x+1
3) f"(0)=1
4) уравнение касательной: у= 1(х-0)+0=х,т.е. у=х