1. а) -2,16 меньше чем 2,1; б) -5 целых 7/11 больше -5 целых 8/11; в) -7,5 меньше 0;
г) -1,19 больше - 1,3; д) - 14,78 меньше 1,478; е) модуль числа -3 целых 3/7 больше 3и2/7
2. 3; 1,95; -6,1; -6 целых 2/7; -38,9; -40; -46 целых 2/9; -58,1
3. а) -66; б) 3,2; в)-16; г) -17,81; д) -19,55 (обрати внимание, некорректное выражение)
е) -8,45
4. пусть х - искомое число, тогда
0,14х - 26 + 3,2 = -17,2
х = 40
5. пусть х - ширина, длина (х + 8), тогда отношение ширины к длине равно:
х/(х+8) = 2/3
х = 16 - это ширина; 16 + 8 = 24 - это длина
AE ⊥ (ABC), EB = 15, EC = 24,
ED = 20.
Доказать: ΔEDC — прямоугольный.
Найти: AE.
Решение: AD ⊥ DC, EA ⊥ (ABC) ⇒
⇒ ED ⊥ DC по теореме о трех перпендикулярах ⇒ ∠EDC = 90°
Ч. т. д. ⇒ DC = 176 = AB ⇒ AE = EB2 − AB2 = 225 −176 = 7.
ответ: AE = 7
2)Треугольники EDC и EBC прямоугольные, по теореме о трех перпендикулярах. "Если наклонная, проведенная к плоскости, перпендикулярна какой-либо прямой, лежащей в плоскости, то ее проекция на плоскость тоже перпендикулярна этой прямой; и наоборот".
AD^2=BC^2=24^2-15^2=351.
AB^2=CD^2=24^2-20^2=176.
AC^2=AB^2+BC^2=351+176=527.
AE^2=EC^2-AC^2=24^2-527=49
AE=7.