М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
кай24
кай24
12.10.2020 12:46 •  Математика

Решить уравнения a) 18,63: (4,3+х)=2,3 б) (4,5+х)*3,1=28,52 в)6,32y-4,67y+2,55y=25,2

👇
Ответ:
Ксения200612
Ксения200612
12.10.2020
A) числит 18,63        2,3
   знамен  4,3 + x  =  1
2,3 ( 4,3 + x) = 18,63
9,89 + 2,3x = 18,63
2,3x = 18,63 - 9,89
2,3x = 8,74
x = 3,8
ответ: x = 3,8

б) 13,95 + 3,1x = 28,52
   3,1x = 28,52 - 13,95
   3,1x = 14,57
   x = 4,7
ответ: x = 4,7

в) 4,2y = 25,2
    y = 25,2 : 4,2
     y = 6

ответ: y = 6
4,4(79 оценок)
Открыть все ответы
Ответ:
Hdzf2002
Hdzf2002
12.10.2020
Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
     Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
     Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,8(98 оценок)
Ответ:
Lukachyk2017
Lukachyk2017
12.10.2020
   Вероятностью события называют отношение числа элементарных исходов испытания, благоприятствующих наступлению события, к числу всех возможных элементарных исходов испытания.
   Исходя из условий задачи, вероятность того, что Муми-тролль будет чувствовать себя совершенно счастливым, составляет 1/3 - математически: общее число исходов =3 дня, число благоприятных исходов (достаточно солнечный день) =1 день, а вот для Хемуля вероятность совершенно счастливого дня — 1/4, так как для него общее число исходов =4 дня, число благоприятных исходов (достаточно солнечный день) =1 день.
   Тогда, в силу теоремы сложения вероятностей, вероятность того, что в случайно выбранный день хотя бы один из них будет совершенно счастлив, составляет 1/3 + 1/4 = 7/12 ≈ 0,583
4,8(19 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ