(0;2]U[4;6)
Пошаговое объяснение:
ОДЗ:
{x > 0;
{6–x > 0 ⇒ x < 6
{(x4–12x3+36x2) > 0⇒ (x·(6–x))2 > 0 ⇒ x≠0; x≠6
ОДЗ: х∈(0;6)
при х∈(0;6):
log2(x4–12x3+36x2)=log2x2·(6–x)2=
log2(x·(6–x))2=2log2x·(6–x)=2log2x+2log2(6–x)
Неравенство принимает вид:
(2–log2x)·(log2(6–x)–2) ≥ 0
Применяем обобщенный метод интервалов
log2x=2 или log2(6–x)=2
x=4 или 6–х=4;х=2
При х=1
(2–log21)·(log2(6–1)–2)=2·(log25–log24) > 0
При х=3
(2–log23)·(log2(6–3)–2)=–(2–log23)2 < 0
При х=5
(2–log25)·(log2(6–5)–2)=(log24–log25)·(0–2) > 0
(0)__+__ [2]__–__[4]__+__ (6)
нам известно что
петя бежал со скоростью 130м\мин. а коля170м\мин. на встречу друг к другу
если они встретились через 3 минуты то нам нужно узнать сколько метров пробежал каждый за 3 минуты
130*3=390 пробежал петя
170*3=510 пробежал коля
390+510=900 длинна дорожки
ответ: длинна дорожки 900 метров
если они встретились через 2 минуты то нам нужно узнать сколько метров пробежал каждый за 2 минуты
130*2=260 пробежал петя
170*2=340 пробежал коля
260+340=600 длинна дорожки
ответ: длинна дорожки 600 метров
2)90-(40+35)=90-75=15-на кассетах
3)15:3=5-сказок на кассетах
ответ:5