Событие A = {будет хотя бы один аудитор высокой квалификации}
Событие B = {будет хотя бы один программист высокой квалификации}
P(A) = 1 − P(¬A), где ¬A — не будет ни одного аудитора высокой квалификации
P(B) = 1 − P(¬B), где ¬B — не будет ни одного программиста высокой квалификации
То есть:
P(A) = 1 − (5/8)·(4/7)·(3/6) = 23/28
P(B) = 1 − (3/5)·(2/4) = 7/10
Тогда:
P(C) = {будет хотя бы один аудитор высокой квалификации и хотя бы один программист высокой квалификации} =
= P(A)·P(B) = (23/28)·(7/10) = 23/40 ≈ 0,575
ответ: 0,575
Можно решать по-другому:
P = m/n, где
m = m₁ · m₂
m₁ = C¹₃ · C²₅ + C²₃ · C¹₅ + C³₃ = 46
m₂ = C¹₂ · C¹₃ + C²₂ = 7
m = 46·7 = 322
n = C³₈ · C²₅ = 560
P = m/n = 322 / 560 = 23/40 = 0,575
ответ: 0,575
Пошаговое объяснение:
(2 * х + 1)* (х - 1) > 9;
Раскрываем скобки. Для этого каждые значения в первой скобке, умножаем на каждое значение во второй скобке, и складываем их в соответствии с их знаками. Тогда получаем:
2 * x ^ 2 - 2 * x + 1 * x - 1 > 9;
Перенесем все значения выражения на одну сторону.
2 * x ^ 2 - x - 1 - 9 > 0;
2 * x ^ 2 - x - 10 > 0;
2 * x ^ 2 - x - 10 = 0;
D = b ^ 2 - 4 * a * c = 1 - 4 * 2 * (- 10) = 1 + 80 = 81;
x1 = (1 + 9)/(2 * 2) = 10/4 = 5/2 = 2,5;
x2 = (1 - 9)/(2 * 2) = - 8/4 = - 2;
Отсюда, x < - 2 и x > 2,5.
Пошаговое объяснение: