М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Найти общее решение диффура методом вариации производных(методом лагранжа) y''+y=-ctg²(x)

👇
Ответ:
ННеетт
ННеетт
23.04.2022
Данное уравнение - линейное неоднородное. Соответствующее однородное уравнение имеет вид
y'' + y = 0.
Характеристическое уравнение имеет вид
k^2 + 1 = 0.
Оно имеет комплексные сопряженные корни 
k_1_,_2 = \pm i,
значит общее решение однородного уравнения имеет вид 
\tilde{y} = C_1cosx + C_2sinx.
Будем искать общее решение неоднородного уравнения в виде 
y = C_1(x)cosx + C_2(x)sinx,
где C_1(x),C_2(x) - некоторые пока неизвестные функции. Составим систему, из которой мы сможем найти эти неизвестные функции:
\left \{ {{C_1'(x)cosx + C_2'(x)sinx = 0} \atop {-C_1'(x)sin(x)+C_2'(x)cosx=-ctg^2(x)}} \right.
Определитель данной системы равен:
W = \left\begin{vmatrix}cosx&sinx\\-sinx&cosx\end{vmatrix}\right = cos^2x + sin^2x = 1.
Дополнительные определители равны:
\Delta_{C'_1(x)} = \left\begin{vmatrix}0&sinx\\-ctg^2x&cosx\end{vmatrix}\right = ctg^2x*sinx = \frac{cos^2x}{sinx} \\ \Delta_{C'_2(x)} = \left\begin{vmatrix}cosx&0\\-sinx&-ctg^2x\end{vmatrix}\right = -cosx*ctg^2x = -\frac{cos^3x}{sin^2x}.
Решение системы таково:
\left \{ {{C'_1(x)= \frac{\Delta_{C'_1(x)}}{W} } \atop {C'_2(x)= \frac{\Delta_{C'_2(x)}}{W}}} \right. \\ \left \{ {{C'_1(x)= \frac{cos^2x}{sinx}} \atop {C'_2(x) = -\frac{cos^3x}{sin^2x}}} \right..
Это производные, а нам нужны сами функции. Значит ищем интегралы:
C_1(x) = \int{\frac{cos^2x}{sinx}} \, dx = \int{\frac{1-sin^2x}{sinx}} \, dx = \int{\frac{dx}{sinx}}-\int{sinx}} \, dx =-\int{\frac{d(cosx)}{sin^2x}} \, dx + cosx =\int{\frac{d(cosx)}{cos^2x-1}} \, dx + cosx = \frac{1}{2} ln| \frac{cosx-1}{cosx+1} | + cosx + C_1.
C_2(x) = -\int{ \frac{cos^3x}{sin^2x}} \, dx = -\int{ \frac{cos^2xd(sinx)}{sin^2x}} = \int{ \frac{sin^2x-1}{sin^2x}}\,d(sinx) = \int{d(sinx)}-\int{ \frac{d(sinx)}{sin^2x}} = sinx + \frac{1}{sinx} + C_2, где C_1,C_2 - произвольные константы.
Осталось только записать решение в общем виде:
y = (\frac{1}{2} ln| \frac{cosx-1}{cosx+1} | + cosx + C_1)cosx + (sinx + \frac{1}{sinx} + C_2)sinx.
При желании можно преобразовать полученный ответ.
4,6(82 оценок)
Открыть все ответы
Ответ:
Roflobara
Roflobara
23.04.2022
Трапеция равнобедренная, значит, углы при ее основаниях равны. проведем две высоты из вершин меньшего основания - см. рисунок нижнее основание разделится на 3 отрезка: 21 + 50 + 21 рассмотрим прямоугольный треугольник, образованный боковой стороной и высотой трапеции. по условию угол при основании равен 60°, значит, второ острый угол данного прямоугольного треугольника равен 90° - 60° = 30° длина катета, лежащего напротив угла в 30°, в два раза меньше длины гипотенузы. значит, длина боковой стороны равна 21 х 2 = 42 найдем периметр: 29 + 50 + 42 + 42 = 163
4,4(34 оценок)
Ответ:
Vika0095
Vika0095
23.04.2022
Персонажи: том сойер, гекльберри финн, бекки тэтчер, тетя полли, джо гарпер том сойер, — веселый и сообразительный мальчишка, которому неведома скука, потому что ему ничего не стоит тут же придумать какую-нибудь шалость или увлекательное занятие, чтобы скоротать свободное время. том олицетворяет собой беспечность и замечательный мир детства середины xix века. его лучшие друзья — джо гарпер и гекльберри финн. когда-то был влюблен в эмми лоренс, но позже её место в сердце тома заняла ребекка тэтчер (бекки). том и гек настоящие авантюристы,они в самые нелепые ситуации своему неудержимому любопытству.

источник:   энциклопедия полезных знаний © ktoikak.com

4,6(22 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ