1. В прямоугольной трапеции из угла C к большому основанию AD проведем перпендикуляр CK (CK=AB). Образовался прямоугольный треугольник CKD
Угол CKD= 90°, угол CDK=60° => угол KCD=180°-90°-60°=30° => KD= 1/2CD
KD= 10,2-3,9= 6,3 см => CK= 6,3 см×2= 12,6 см. Т.к CK=AB=> AB= 12,6 см
2. В параллелограмме стороны попарно равны и параллельны, т.е. если 1-а сторона равна 3-ем, то вторая тоже будет равна 3-ем.
3+3= 6 столько метров понадобится на 2 стороны.
16-6=10 метров остается на 2 другие стороны.
10:2=5
ответ: не более пяти метров
3. BCND - параллелограмм, так как ВС║ND, BN║CD.
Значит CD = BN и ND = BC = 5 см
⇒
Pabn = AB + BN + AN = AB + CD + AN = 28 см
Pabcd = AB + BC + CD + AD = AB + 5 + CD + (AN + ND) =
= (AB + CD + AN) + 5 + ND = 28 + 5 + ND = 33 + ND
Но ND = BC = 5 см
Pabcd = 33 + 5 = 38 см
4. BG= 2CF-De=50;
AH=2BG-CF=56
l=38+44+50+56=1,88 (м.)
ответ: a=2m-b, ADEH - трапеция
Пошаговое объяснение:
Y=1/(X^2-1)
1)D(y)=(-беск;-1) (-1;1) (1;+беск), т.к. x^2-1=0; x^2=1;x=+-1
2) y=0; 1/(x^2-1)=0 решений не имеет, график не пересекает ось х
пересекает ось у х=0; у=1/(0-1)=-1; (0;-1)
3)у>0 ; x^2-1>0; x^2>1; (-,беск; -1) (1;+беск)
y<0; x^2-1<0; x^2<1; (-1;1)
4) y=f(x); f(-x)=1/((-x)^2-1)=1/(x^2-1)=f(x); заданная ф-я чётная
её график симметричен относительно оси у
5)непериодическая; 6) х=-1 и х=1-вертикальные асимптоты (знаменатель обращается в 0!) Они и есть точки разрыва
7) y '=-1/(x^2-1)^2 *(x^2-1)'=-2x/(x^2-1)^2; -2x=0; x=0
(x^2-1)^2>0!; -2x>0 => x<0,
-2x<0 =>x>0
y ' + + - -
-1 01
y возрас тает убывает убывает х=0-точка макс; (0;-1)
8)y ''=-(2x/(x^2-1)^2)'=-(2(x^2-1)^2-2x* 2(x^2-1)*2x)/(x^2-1)^4=-((x^2-1)(2x^2-2-8x))/(x^2-1)^4=-(2x^2-8x-2)/(x^2-1)^3
y ''=0 дальше сами