Если в трехзначном числе с различными ненулевыми цифрами сложить все возможные двузначные числа, образованные из цифр этого числа, то получится число, которое в два раза больше исходного. чему может равняться это число?
(abc) - означает число составленное из цифр a,b,c Пусть задано число (abc)=100a+10b+c По условию 2(abc)=(ab)+(ba)+(ac)+(ca)+(bc)+(cb)=20(a+b+c)+2(a+b+c)=22(a+b+c) 100a+10b+c=11a+11b+11c 89a=b+10c Например подходят a=1, b=9, c=8 То есть число 198
будем решать от противного(положного). этап 1. предположим что есть такие 2 числа. тогда при делении мы получим 2 или 3 потому что минимальное число 1234, а максимальное 4321 4321 : 1234 = 3,*** < 4 если при делении 1 - то числа равные (не может быть) этап 2. если при делении получим 2 тогда при умножении меньшего получим в составе большего цифры: 1*2 = 2, 2 * 2 = 4, 3 * 2 = 6 - чего быть не может. остается только вариант, когда одно в 3 раза меньше другого. этап 3. рассмотрим меньшее из чисел. если последнюю цифру поставить 2 или 3 то в результате умножения получим 6 или 8 - чего быть не может. если последняя цифра = 1 то первая 2, 3 или 4 умноженная на 3 даст больше 4 - противоречие к (если последняя цифра = 1) рассмотрим последний вариант, где последняя цифра = 4, первая соответственно = 1 (2 и 3 умноженные на 3 > 4) 4 * 3 = 12 если вторая цифра = 2 то 2*3 + 1 = 7 - противоречие если вторая цифра = 3 то 3 * 3 + 1 =10 (или 0) - опять противоречие.
таким образом мы исключили все варианты образования меньшего из чисел и тем самым показали что 2 чисел с указанными свойствами не существует.
будем решать от противного(положного). этап 1. предположим что есть такие 2 числа. тогда при делении мы получим 2 или 3 потому что минимальное число 1234, а максимальное 4321 4321 : 1234 = 3,*** < 4 если при делении 1 - то числа равные (не может быть) этап 2. если при делении получим 2 тогда при умножении меньшего получим в составе большего цифры: 1*2 = 2, 2 * 2 = 4, 3 * 2 = 6 - чего быть не может. остается только вариант, когда одно в 3 раза меньше другого. этап 3. рассмотрим меньшее из чисел. если последнюю цифру поставить 2 или 3 то в результате умножения получим 6 или 8 - чего быть не может. если последняя цифра = 1 то первая 2, 3 или 4 умноженная на 3 даст больше 4 - противоречие к (если последняя цифра = 1) рассмотрим последний вариант, где последняя цифра = 4, первая соответственно = 1 (2 и 3 умноженные на 3 > 4) 4 * 3 = 12 если вторая цифра = 2 то 2*3 + 1 = 7 - противоречие если вторая цифра = 3 то 3 * 3 + 1 =10 (или 0) - опять противоречие.
таким образом мы исключили все варианты образования меньшего из чисел и тем самым показали что 2 чисел с указанными свойствами не существует.
Пусть задано число (abc)=100a+10b+c
По условию 2(abc)=(ab)+(ba)+(ac)+(ca)+(bc)+(cb)=20(a+b+c)+2(a+b+c)=22(a+b+c)
100a+10b+c=11a+11b+11c
89a=b+10c
Например подходят a=1, b=9, c=8
То есть число 198