14.4 см
Пошаговое объяснение:
Побудуємо прямокутник ABCD, та проведемо в ньому діагоналі АС і BD, а також висоту DO до діагоналі АС і висоту EK із точки перетину діагоналей до більшої сторони AD.
Приймемо, що ОС=х,
тоді АС=4х.
Так як діагоналі прямокутника рівні і точкою перетину діляться навпіл, то АЕ=СЕ=ЕD=2х
і OE=CE-OC ⇒ OE=2x-x ⇒ OE=x.
Так як точка перетину діагоналей прямокутника є його геометричним центром, то CD=2EK=7.2 см.
Тоді, із прямокутного ΔCDO маємо:
OD²=CD²-OC² ⇒ OD²=51.84 - x²
Із прямокутного ΔEDO маємо:
OD²=ED²-OE² ⇒ OD²=4x² - x² ⇒ OD²=3x²
Отримуємо вираз:
51.84 - x² = 3x²
4x²=51.84
x=3.6
Тоді довжина діагоналі:
АС=4х=14.4 см
ДАНО
Y = x³ - 6x² + 9x
1.Область определения D(x) - Х∈(-∞;+∞) - непрерывная.
Вертикальных асимптот - нет.
2. Пересечение с осью Х. Y= 0 Корни: х₁,₂ =3, х₃ = 0.
3. Пересечение с осью У. У(0) = 0.
4. Поведение на бесконечности.limY(-∞) = - ∞ limY(+∞) = +∞.
Горизонтальной асимптоты - нет.
5. Исследование на чётность.Y(-x) ≠ Y(x).
Функция ни чётная ни нечётная.
6. Производная функции.Y'(x)= 3*x² - 12*х+9 = 3*(х-1)*(х - 3).
Корни: х₁=1 , х₂ = 3.
7. Локальные экстремумы.
Максимум Ymax(11)= 4, минимум – Ymin(3)=0.
8. Интервалы монотонности.
Возрастает - Х∈(-∞;1)∪(3;+∞) , убывает = Х∈(1;3).
8. Вторая производная - Y"(x) = 6*(x - 2)=0.
Корень производной - точка перегиба Y"(2)= 2.
9. Выпуклая “горка» Х∈(-∞;2), Вогнутая – «ложка» Х∈(2;+∞).
10. Область значений Е(у) У∈(-∞;+∞)
11. Наклонная асимптота. Уравнение: lim(oo)(k*x+b – f(x).
k=lim(oo)Y(x)/x = ∞. Наклонной асимптоты - нет
12. График в приложении.