1) 400 - 260 = 140 (км) расстояние, которое проехал ii автомобиль от города в до места встречи. 2) 140 : 90 = ¹⁴/₉ = 1 ⁵/₉ (ч.) время на путь ii автомобиля от города в до места встречи (или время, которое оба автомобиля двигались навстречу друг другу ) 3) 2 + 1 ⁵/₉ = 3 ⁵/₉ (ч.) время на путь i автомобиля от города а до места встречи 4) 260 : 3 ⁵/₉ = ²⁶⁰/₁ × ⁹/₃₂ = ⁽⁶⁵ ˣ ⁹⁾ /₍₁ ₓ ₈₎ = ⁵⁸⁵/₈ = 73 ¹/₈ = 73,125 (км/ч) скорость i автомобиля. проверим: s = (73,125 + 90) × 1 ⁵/₉ + 73,125× 2 = 163¹/₈ × 1 ⁵/₉ + 146,25 = = ¹³⁰⁵/₈ × ¹⁴/₉ + 146,25 = 253,75 + 146,25 = 400 (км) ответ: 73,125 км/ч скорость первого автомобиля.
1)f(x)=log5(x-6/x^2+3x) ОДЗ: (x-6)/(x^2+3x) >0 Определим, при каких значениях Х выражения, стоящие в числителе и знаменателе, обращаются в нуль: x-6=0; x=6 x^2+3x=0; x(x+3)=0; x=0 U x=-3 Нанесем эти числа на числовую ось: -(-3)+(0)-(6)+
ответ: D(y)= (-3;0) U (6; + беск.)
2)V - знак корня V(15x^2-x+12)=4x ОДЗ: x>=0 Возведем обе части уравнения в квадрат: 15x^2-x+12=16x^2 15x^2-x+12-16x^2=0 -x^2-x+12=0 x^2+x-12=0 D=1^2-4*1*(-12)=49 x1=(-1-7)/2=-4 - посторонний корень x2=(-1+7)/2=3 ответ: 3
3)2cos^2x-5cos x-7=0 Замена: cosx=t, -1<=t<=1 2t^2-5t-7=0 D=(-5)^2-4*2*(-7)=81 t1=(5-9)/4=-1 t2=(5+9)/4=3,5 - посторонний корень Обратная замена: cos x=-1 x=П + 2Пк, k e Z