М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
LilyaDolz
LilyaDolz
10.05.2023 14:26 •  Математика

Длина зеркала прямо угольный формы 21 см а ширина в три раза меньше насколько сантиметров длина в зеркало больше его ширины найди периметр этого зеркала

👇
Ответ:
khgssfghdwwcnoy
khgssfghdwwcnoy
10.05.2023
Ширина зеркала в 3 раза меньше. Это значит 21:3=7.
P=21+21+7+7=56
4,7(46 оценок)
Открыть все ответы
Ответ:
Вольфыч228
Вольфыч228
10.05.2023

3/5

Пошаговое объяснение:

переведем все дроби в десятичный вид.

если дробь не может быть представлена в виде конечной десятичной дроби, у нее указан в скобках период (это будет периодическая дробь) и далее напротив такой дроби стоит знак "-"

\displaystyle \frac{2}{5} =0.4frac{5}{8} =0.625frac{12}{7} =1.(714285)\qquad \boldsymbol {-}frac{13}{2} =6.5frac{23}{20} =1.15frac{8}{15} = 0.5(3)\qquad \boldsymbol {-}frac{33}{16} =2.0625frac{16}{9} = 1.(7) \qquad \boldsymbol {-}frac{2}{35}=0.0(571428) \qquad \boldsymbol {-}frac{1}{50} =0.02

итак, из 10 данных дробей 6 могут быть представлены в виде конечной десятичной дроби

и это будет 6/10 от всех дробей или (6/10 = 3/5)

ответ

3/5  общего количества всех чисел, указанных в таблице, составляют дроби, которые можно представить в виде конечной десятичной дроби

4,6(14 оценок)
Ответ:
Viki258
Viki258
10.05.2023

Нет

Пошаговое объяснение:

Задачу можно переформулировать следующим образом:

Дан набор p_1,p_2,...,p_{2k} различных простых чисел. Может ли выполняться равенство \dfrac{1}{p_1}+\dfrac{1}{p_3}+...+\dfrac{1}{p_{2k-1}}=\dfrac{1}{p_2}+\dfrac{1}{p_4}+...+\dfrac{1}{p_{2k}}\;?\;\;\;\;\;\;(1)

[Равенство (1) получается из приведенного в условии делением на ненулевое число n и переносом отрицательных слагаемых в правую часть]

Рассмотрим, например, левую часть:

\dfrac{1}{p_1}+\dfrac{1}{p_3}+...+\dfrac{1}{p_{2k-1}}=\dfrac{p_3...p_{2k-1}}{p_1p_3...p_{2k-1}}+\dfrac{p_1p_5...p_{2k-1}}{p_1p_3p_5...p_{2k-1}}+...+\dfrac{p_1p_3...p_{2k-3}}{p_1p_3...p_{2k-3}p_{2k-1}}=\\ =\dfrac{\sum\limits_{i=1}^k \prod\limits_{j=1,j\neq i}^k p_{2j-1}}{p_1p_3...p_{2k-3}p_{2k-1}}

И числитель, и знаменатель, очевидно, натуральные числа. Значит, левая часть представлена в виде обыкновенной дроби. Проверим, является ли она несократимой.

Пусть у числителя и знаменателя есть общий простой множитель, на который их можно сократить. Но тогда это одно из чисел p_1,p_3,...,p_{2k-1} [т.к. знаменатель представлен в виде произведения этих простых].

Итак, рассмотрим некоторое из этих чисел p_{2s-1}, s=\overline{1,k}.

В сумме \sum\limits_{i=1}^k \prod\limits_{j=1,j\neq i}^k p_{2j-1} все слагаемые, кроме s-ого, содержат в своем разложении на множители p_{2s-1}, а значит делятся на него. Остается слагаемое \prod\limits_{j=1,j\neq s}^k p_{2j-1}=p_1p_3...p_{2(s-1)-1}p_{2(s+1)-1}...p_{2n-1} - но все сомножители в нем являются простыми числами, отличными от p_{2s-1}, а значит их произведение (т.е. само слагаемое) не делится на p_{2s-1}.

Тогда и сумма \sum\limits_{i=1}^k \prod\limits_{j=1,j\neq i}^k p_{2j-1} не делится на p_{2s-1}.

Перебрав все значения s, получаем, что числитель и знаменатель не имеют общих простых множителей - а значит дробь несократима.

Аналогично получаем, что правая часть

\dfrac{1}{p_2}+\dfrac{1}{p_4}+...+\dfrac{1}{p_{2k}}=\dfrac{\sum\limits_{i=1}^k \prod\limits_{j=1,j\neq i}^k p_{2j}}{p_2p_4...p_{2k-2}p_{2k}} - несократимая дробь.

То есть получили равенство двух положительных несократимых дробей с положительными знаменателями p_1p_3...p_{2k-1} и p_2p_4...p_{2k} и положительными числителями.

Но такое возможно лишь если числители и знаменатели равны между собой.

С другой стороны, например, знаменатель левой части p_1p_3...p_{2k-1} делится на p_1, а знаменатель правой p_2p_4...p_{2k} нет, а значит совпадать они не могут. Противоречие.

Значит, указанное равенство невозможно.

4,7(41 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ