М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
karinaflyg
karinaflyg
29.10.2021 00:38 •  Математика

Три участника задумывают целое положительное число и записывают их на листочке. потом они попарно называют сумму задуманных чисел. фокусник мгновенно после этого называет задуманные числа. как он это делает?

👇
Ответ:
Маркус337
Маркус337
29.10.2021
A b c числа
a+b b+c a+c а это уже имеет вид стандартной задачи, аля у васи с петей столько то монет, а у васи с сашей столько)
4,4(13 оценок)
Открыть все ответы
Ответ:
keckush
keckush
29.10.2021
Выделение полного квадрата - операция подведения под формулу квадрата суммы/разности. Например,
3x^2-2x+1=( \sqrt{3}x- \frac{1}{ \sqrt{3}})^2+ \frac{2}{3}
или
x^2-5x+6=(x- \frac{5}{2})^2- \frac{1}{4}=(x- \frac{5}{2})^2-( \frac{1}{2})^2=(x-3)(x-2)
Выделение полного квадрата в решении квадратных уравнений/неравенств применяется нечасто (обычно при соответствующем указании), потому что существующие методы достаточно прозрачно показывают ход решения, позволяя обозначить ключевые моменты (например, если нет корней, тогда D<0; или корни совпадают, если D=0; или же теорема Виета для приведённых уравнений).
Гораздо более востребовано выделение полного квадрата при упрощении рациональных выражений, при интегрировании или разложении функции в ряд.
4,6(96 оценок)
Ответ:
marmurinajulia
marmurinajulia
29.10.2021

вот

Пошаговое объяснение:       y'' + 10y' + 24y = 6e^(-6x) + 168x + 118

Неоднородное уравнение 2 порядка.

y(x) = y0 + y* (решение однородного + частное решение неоднородного).

Решаем однородное уравнение

y'' + 10y' + 24y = 0

Характеристическое уравнение

k^2 + 10k + 24 = 0

(k + 4)(k + 6) = 0

y0 = C1*e^(-4x) + C2*e^(-6x)

Находим частное решение неоднородного уравнения

-6 - один из корней характеристического уравнения, поэтому

y* = A*x*e^(-6x) + B1*x + B2

y* ' = A*e^(-6x) - 6Ax*e^(-6x) + B1

y* '' = -6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x)

Подставляем в уравнение

-6A*e^(-6x) - 6A*e^(-6x) + 36A*x*e^(-6x) + 10A*e^(-6x) - 60Ax*e^(-6x) + 10B1 + 24A*x*e^(-6x) + 24B1*x + 24B2 = 6e^(-6x) + 168x + 118

(-6A - 6A + 36A*x + 10A - 60A*x + 24A*x)*e^(-6x) + 24B1*x + (10B1 + 24B2) =

= 6e^(-6x) + 168x + 118

Приводим подобные в скобке при e^(-6x)

-12A + 10A + 60A*x - 60A*x = -2A

Подставляем

-2A*e^(-6x) + 24B1*x + (10B1 + 24B2) = 6e^(-6x) + 168x + 118

Коэффициенты при одинаковых множителях должны быть равны

{ -2A = 6

{ 24B1 = 168

{ 10B1 + 24B2 = 118

Решаем

{ A = -3

{ B1 = 7

{ 70 + 24B2 = 118; B2 = (118 - 70)/24 = 48/24 = 2

y* = -3x*e^(-6x) + 7x + 2

ответ: y = y0 + y* = C1*e^(-4x) + C2*e^(-6x) - 3x*e^(-6x) + 7x + 2

4,6(78 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ