М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Mint231
Mint231
23.11.2021 18:44 •  Математика

Решить уровнения: 1)3/7: k=5: 2 1/3 2)5.5: 8=к: 2/11 3)к: 5/9=1.8: 6 4)20: 3.25=4/13: к

👇
Ответ:
blakblood2влад
blakblood2влад
23.11.2021
1) \frac{3}{7} ÷ k = 5 ÷ 2\frac{1}{3}
\frac{3}{7} ÷ k = 5 × \frac{3}{7}
k = \frac{3}{7} ÷ \frac{15}{7}
k = \frac{3*7}{7*15}
k = \frac{1}{5}
k = 0,2
2) 5,5 ÷ 8 = k ÷ \frac{2}{11}
\frac{11}{2} × \frac{1}{8} = k ÷ \frac{2}{11}
k = \frac{11*2}{16*11}
k = \frac{1}{8}
k = 0,125
3) k ÷ \frac{5}{9}1\frac{4}{5} ÷ 6
k ÷ \frac{5}{9}\frac{9}{5*6}
k = \frac{5*3}{9*10}
k = \frac{1}{6}
4) 20 ÷ 3\frac{1}{4}\frac{4}{13} ÷ k
\frac{20*4}{13}\frac{4}{13} ÷ k
k = \frac{4*13}{13*80}
k = \frac{1}{20}
k = 0,05
4,6(55 оценок)
Открыть все ответы
Ответ:
mludap
mludap
23.11.2021
Определённому интегралу геометрически соответствует площадь некоторой фигуры.
Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение:
-x²+4x-1=-x-1
-x²+4x-1+x+1=0
-x²+5x=0
x(5-x)=0
x=0   5-x=0
         x=5
Нашли верхний 5 и нижний 0 пределы интегрирования.
Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле:
S= \int\limits^a_b {(f(x)-g(x))} \, dx
В нашем примере парабола расположена выше прямой -x-1
S= \int\limits^5_0 {(-x^2+4x-1-(-x-1))} \, dx= \int\limits^5_0 {(-x^2+5x)} \, dx=
=- \frac{x^3}{3}+ \frac{5x^2}{2}=- \frac{5^3}{3}+ \frac{5*5^2}{2} +0-0=- \frac{125}{3}+ \frac{125}{2}= \frac{-250+375}{6}=20 \frac{5}{6}

ответ: S=20(5/6) ед²
4,6(55 оценок)
Ответ:
Rinyasan
Rinyasan
23.11.2021
Определённому интегралу геометрически соответствует площадь некоторой фигуры.
Для начала лучше начертить чертёж, по нему можно найти точки пересечения линий. Хотя можно найти их и по другому. Решаем уравнение:
-x²+4x-1=-x-1
-x²+4x-1+x+1=0
-x²+5x=0
x(5-x)=0
x=0   5-x=0
         x=5
Нашли верхний 5 и нижний 0 пределы интегрирования.
Если на отрезке [a;b] некоторая функция f(x) больше или равна некоторой функции g(x), то площадь фигуры, ограниченной графиками данных функций и прямыми х=а и x=b, можно найти по формуле:
S= \int\limits^a_b {(f(x)-g(x))} \, dx
В нашем примере парабола расположена выше прямой -x-1
S= \int\limits^5_0 {(-x^2+4x-1-(-x-1))} \, dx= \int\limits^5_0 {(-x^2+5x)} \, dx=
=- \frac{x^3}{3}+ \frac{5x^2}{2}=- \frac{5^3}{3}+ \frac{5*5^2}{2} +0-0=- \frac{125}{3}+ \frac{125}{2}= \frac{-250+375}{6}=20 \frac{5}{6}

ответ: S=20(5/6) ед²
4,6(23 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ