М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Зефирка1907
Зефирка1907
06.02.2022 06:24 •  Математика

Условие ! и решение в корзине 32 граната. половину гранатов взял анвар, четверть - гульноза. сколько гранатов осталось в корзине?

👇
Ответ:
StilesStilinsky
StilesStilinsky
06.02.2022
32/2=16 (Анвар)
32/4=8 (гульноза)
32-16-8=8 Осталось гранатов в корзине
4,8(82 оценок)
Ответ:
zilga1
zilga1
06.02.2022
Всего - 32 граната
Анвар - ? в 2 раза < всего
Гульноза - ? В 4 раза < всего
Ост. - ?
1) 32 :2 = 16 (г) - взяли Ангар.
2)32 : 4=8 (г) - взяла Гульноза .
3)16+8= 24 (г) - взяли оба.
4) 32-24= 8 (г) - осталось.
4,8(65 оценок)
Открыть все ответы
Ответ:
nusunusretp0ale8
nusunusretp0ale8
06.02.2022

Обозначим поля квадратной таблицы через a₁, a₂, ... a₉. По условию

a₁ * a₂ * a₄ * a₅ = 32

a₂ * a₃ * a₅ *a₆ = 32

a₄ * a₅ * a₇ * a₈ = 32

a₅ * a₆ * a₈ * a₉ = 32

Также выполняются равенства

a₁ * a₂ * a₃ = 16

a₄ * a₅ * a₆ = 16

a₇ * a₈ * a₉ = 16

Перемножим первое и второе из этих равенств

a₁ * a₂ * a₃ * a₄ * a₅ * a₆ = 16²

Но так как a₁ * a₂ *a₄ * a₅ = 32, то a₃ * a₆ = 8 и так как a₂ * a₃ * a₅ * a₆ = 32, то a₁ * a₄ = 8. Отсюда a₇ = 2, a₉ = 2 и a₈ = 4. 

Перемножим второе и третье равенства

a₄ * a₅ * a₆ * a₇ * a₈ * a₉ = 16² 

Так как  a₄ * a₅ * a₇ *a₈ = 32, то a₆ * a₉ = 8 и так как a₅ * a₆ *a₈ *a₉ = 32, то a₄ * a₇ = 8. Отсюда a₆ = 4, a₄ = 4 и a₅ = 1.

То есть в центре таблицы стоит единица. Вся таблица выглядит так:

2     4     2

4     1     4

2     4     2

ответ: В центре таблицы стоит единица.

4,5(61 оценок)
Ответ:
Krichikis
Krichikis
06.02.2022

Пошаговое объяснение:

Проверить сходимость ряда можно несколькими Во-первых можно просто найти сумму ряда. Если в результате мы получим конечное число, то такой ряд сходится. Например, поскольку

то данный ряд сходится. Если нам не удалось найти сумму ряда, то следует использовать другие методы для проверки сходимости ряда.

Одним из таких методов является признак Даламбера, который записывается следующим образом:

здесь  и  соответственно  и  члены ряда, а сходимость определяется значением . Если  - ряд сходится, если  - расходится. При  - данный признак не даёт ответа и нужно проводить дополнительные исследования.

В качестве примера, исследуем сходимость ряда ∞n0n4n с признака Даламбера. Сначала запишем выражения для ann4n и an1n14n1 . Теперь найдем соответствующий предел:

limn∞an1anlimn∞n14n4n1nlimn∞n14n14limn∞11n14

Поскольку 14<1 , в соответствии с признаком Даламбера, ряд сходится.

Еще одним методом, позволяющим проверить сходимость ряда является радикальный признак Коши, который записывается следующим образом:

limn∞nanD

здесь an n-ый член ряда, а сходимость, как и в случае признака Даламбера, определяется значением D: Если D < 1 - ряд сходится, если D > 1 - расходится. При D = 1 - данный признак не даёт ответа и нужно проводить дополнительные исследования.

В качестве примера, исследуем сходимость ряда ∞n05n12n56n2 с радикального признака Коши. Сначала запишем выражение для an5n12n56n2 . Теперь найдем соответствующий предел:

limn∞nanlimn∞n5n12n56n2limn∞5n12n56n2nlimn∞5n12n562nlimn∞5n1n2n5n62nlimn∞51n25n62nlimn∞51n25n6limn∞51n25n2n5261562564

Поскольку 1562564>1 , в соответствии с радикальным признаком Коши, ряд расходится.

Стоит отметить, что наряду с перечисленными, существуют и другие признаки сходимости рядов,

4,7(36 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ