Рассмотрим три случая: 1) оба числа четные, тогда их сумма будет тоже четной, также как и их произведение. Следовательно, перемножив два четных числа, нечетное не получится
2) оба числа нечетные, тогда их сумма будет четной, а произведение нечетным. Перемножая четное и нечетное число, получится четное число. Тоже мимо
3) одно число четное, а другое нечетное. Тогда их сумма будет нечётной, а их произведение четным. Перемножив нечётное и чётное число, получим четное
Для лучшего восприятия надо начертить график функции и тогда сразу будет видно о какой фигуре идёт речь. Чтобы найти площадь фигуры ограниченной линиями необходимо вычислить интеграл от функции ограничивающей эту фигуру. В нашем случае это парабола ветви которой направлены вниз. Нас интересует фигура, ограниченная параболой и осью ОХ. Определяем пределы интегрирования. Это можно сделать по чертежу: это точки пересечения параболу с осью ОХ х=-1 и х=1 и аналитически, решив уравнение: 1-x²=0 -x²=-1 x²=1 x=1 x=-1 Далее находим площадь по формуле