М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
gopina04vika
gopina04vika
28.02.2020 14:56 •  Математика

Периметр первого прямоугольника 26см, второго на 18 см больше. длины этих фигур одинаковы. найди площади прямоугольников если ширина второго 10 с.м на сколько площадь одного прямоугольника больше площади другого? (запиши условие в таблице если сможете).

👇
Ответ:
frondron
frondron
28.02.2020

S1=12*1=12см2

S2=12*10=120см2

Больше в 10 раз

4,8(14 оценок)
Открыть все ответы
Ответ:
ник3999
ник3999
28.02.2020

ответ:

алгоритм исследования функции двух переменных на экстремум

функция z = f(x,y) имеет максимум в точке m0(x0; y0), если f(x0; y0) > f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. функция z = f(x,y) имеет минимум в точке m0(x0; y0), если f(x0; y0) < f(x; y) для всех точек (x; y), достаточно близких к точке (x0; y0) и отличных от неё. максимум и минимум функции называются экстремумами функции.  

исследование функции двух переменных на экстремум проводят по следующей схеме.  

1. находят частные производные dz/dx и dz/dy.  

2. решают систему уравнений:

и таким образом находят критические точки функции.  

3. находят частные производные второго порядка:

4. вычисляют значения этих частных производных второго порядка в каждой из найденных в п.2 критических точках m(x0; y0).

5. делаю вывод о наличии экстремумов:  

а) если ac – b2 > 0 и a < 0 , то в точке m имеется максимум;  

б) если ac – b2 > 0 и a > 0 , то в точке m имеется минимум;  

в) если ac – b2 < 0, то экстремума нет;  

г) если ac – b2 = 0, то вопрос о наличии экстремума остается открытым;

пример №1. найти экстремумы функции f(x,y)=x3+xy2+x2+y2 и определить по критерию сильвестра их тип.  

решение.  

1. найдем первые частные производные.  

 

 

2. решим систему уравнений.  

3x2+2x+y2=0  

2xy+2y=0  

получим:  

а) из первого уравнения выражаем x и подставляем во второе уравнение:  

x = -1  

y2+1=0  

данная система уравнений не имеет решения.  

б) из первого уравнения выражаем y и подставляем во второе уравнение:  

 

 

или  

 

 

или  

откуда x1 = -2/3; x2 = 0; x3 = -2/3; x4 = 0  

данные значения x подставляем в выражение для y. получаем: y1 = 0; y2 = 0; y3 = 0; y4 = 0  

количество критических точек равно 2: m1(-2/3; 0), m2(0; 0)  

3. найдем частные производные второго порядка.  

 

 

 

4. вычислим значение этих частных производных второго порядка в критических точках m(x0; y0).  

вычисляем значения для точки m1(-2/3; 0)  

 

 

 

ac - b2 = -4/3 < 0, то экстремума нет.  

вычисляем значения для точки m2(0; 0)  

 

 

 

ac - b2 = 4 > 0 и a > 0 , то в точке m2(0; 0) имеется минимум z(0; 0) = 0  

вывод: в точке m2(0; 0) имеется минимум z(0; 0) = 0

пример №2. исследовать функцию на экстремум классическим методом: z=8x2+2xy-5x+6.

пошаговое объяснение:

4,8(7 оценок)
Ответ:
milenabalayan
milenabalayan
28.02.2020

ответ:

с контрольной на завтра, нет времени пишу даже данный текст был скопирован с документа txt

1.из уравнений биквадратным с:

а)x⁴ - x + 1 = 0

б)x⁴ - x³ - 1 =0

в)x⁴ - 4x² + 6 = 0

г)другое

2.якщо в рівнянні x⁴-10x²+9=0 зробити заміну x²=t то дістанемо рівняння

а)t⁴ - 10t +9 = 0

б)t² - 10t = 0

в)t² - 10t + 9 = 0

г)другое

3.разложите на множители выражение

8x² -6x -2

4.сократите дробь  

x²- 6x +5

x² -25

5.решите уравнение

x⁴ - 12x² + 27 = 0

пошаговое объяснение:

способ.  

все рациональные (в данном случае целые) решения должны являться делителями свободного члена (четвёрки) .  

т, е. все целые решения могут быть равны ±1, ±2, ±4.  

подбором убеждаемся, что x₁=2 и x₂=−2 являются корнями уравнения.  

разделив (столбиком) исходный многочлен на (x−2)(x+2) = (x²−4), получим:  

x⁴ − x³ − 3x² + 4x − 4 = (x²−4)(x²−x+1) = 0  

решая уравнение x²−x+1 = 0, получаем, что других действительных корней уравнение не имеет (дискриминант d=1−4=−3< 0).  

но есть ещё два комплексно-сопряжённых корня  

x₃,₄ = (1±i√3)/2.  

 

ii способ.  

разложим многочлен на множители, сгруппировав слагаемые:  

x⁴ − x³ − 3x² + 4x − 4 = x²(x²−4) + (x²−4) − x(x²−4) = (x²−x+1)(x²−4).  

отсюда получаем те же корни, чо и в i способе.  

 

ответ: два действительных корня x₁,₂ = ±2  

и два комплексно-сопряжённых корня  

x₃,₄ = (1±i√3)/2.

4,6(68 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ