Пусть расстояние между пунктами А и В равно S км, скорость первого (из А) х км/ч, второго - у км/ч. Первый полпути за (S/2)/x часов. За это время второй у=S*y/(2*x) км. Eму осталось пройти S-S*y/(2*x)=S*(2*x-y)/(2*x) км . S*(2*x-y)/(2*x)=24 (1). Второй полпути за (S/2)/у часов. За это время первый у)*х=S*х/(2*у) км Eму осталось пройти S-S*х/(2*у)=S*(2*у-х)/(2*у) км S*(2*у-х)/(2*у)=15 (2). Поделим почленно уравнение (1) на уравнение (2), получим (2*x-y)/(2*у-х)=1,6*х/у. Поделим числитель и знаменатель последнего уравнения на у, и обозначим х/у=a. (2*a-1)/(2-a)=1,6*a 2*a-1=3,2*a-1,6*a^2 1,6*a^2-1,2*a-1=0 8*a^2-6*a-5=0 a1=(3/8)+√(9/64+5/8)=5/4 a2=(3/8)-√9/64+5/8)=-1/2 не удов усл х/у=5/4 или у=0,8*х. Подставив это в уравнение (1) или (2) получим S=40 км. Когда первый полпути, второй км. Когда первый дойдет до пункта В, второму останется пройти до А 24-16=8 км.
1) 764 : 24 = 31, 83 (уч) на каждый класс, но мы не можем взять 0,83 ученика, так как должен быть только целый ученик (т.е. равный единице). 2) 32 х 24 = 768 (уч) должно быть, если в каждом классе по 32 ученика 3) 768 - 764 = 4 (уч) Этих четырёх учеников убираем по одному ученику из четырёх классов 4) 24 - 4 = 20(классов) остаётся по 32 ученика 5) 32 - 1 = 31(ученик) в четырёх классах Проверяем общее количество учеников 6) 32 х 20 + 31 х 4 = 640 + 124 = 764(ученика) ответ : обязательно должен найтись класс, в котором учатся меньше 32 учеников
Х-3443=540
Х=540+3443
Х=3983 кг собрали дачники