Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
15 = 3 · 5
18 = 2 · 3 · 3
Общие множители чисел: 3
НОД (15; 18) = 3
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
18 = 2 · 3 · 3
15 = 3 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (15; 18) = 2 · 3 · 3 · 5 = 90
Наибольший общий делитель НОД (15; 18) = 3
Наименьшее общее кратное НОК (15; 18) = 90
Наибольший общий делитель::
Разложим числа на простые множители и подчеркнем общие множители чисел:
600 = 2 · 2 · 2 · 3 · 5 · 5
1075 = 5 · 5 · 43
Общие множители чисел: 5; 5
Чтобы найти НОД чисел, необходимо перемножить их общие множители:
НОД (600; 1075) = 5 · 5 = 25
Наименьшее общее кратное::
Разложим числа на простые множители. Сначала запишем разложение на множители самого большого число, затем меньшее число. Подчеркнем в разложении меньшего числа множители, которые не вошли в разложение наибольшего числа.
1075 = 5 · 5 · 43
600 = 2 · 2 · 2 · 3 · 5 · 5
Чтобы определить НОК, необходимо недостающие множители (эти множители подчеркнуты) добавить к множителям большего числа и перемножить их:
НОК (600; 1075) = 5 · 5 · 43 · 2 · 2 · 2 · 3 = 25800
Наибольший общий делитель НОД (600; 1075) = 25
Наименьшее общее кратное НОК (600; 1075) = 25800
Пошаговое объяснение:
x∈ (-n-2;-n+2]
Пошаговое объяснение:
Вычислим радиус сходимости:
Находим область сходимости степенного ряда:
x∈(-n-2; -n+2)
Остаётся проверить сходимость ряда на концах данного интервала.
При х = -n-2 мы получим следующий ряд:
∑=∑
Рассмотрим первых 3 члена данного ряда: -2; 1/8; -128
Данный ряд будем исследовать по признакам Лейбница
Как видим, выполняется лишь второе условие Лейбница, а значит ряд расходится => x=-n-2 является точкой расходимости.
Рассматриваем второй конец x=-n+2
Получаем следующий ряд
∑=∑
Тут исследуем по признакам Даламбера
q=1 - неопределённость, т.к. при q>1 ряд расходится, а при q<1 - сходится.
q<1 , а это значит, что ряд сходится. х=-n+2 является точкой сходимости.
Тогда данный степенной ряд является сходящимся при x∈ (-n-2;-n+2]