А) имеется в виду скорее всего уничтожение одного из бомбардировщиков, а не двух вместе.
Так как в предыдущем ответе б) и в) найдены верно. Это случай, когда сбиты одновременно два бомбардировщика 0,56, а также случай, когда не сбит ни один из бомбардировщиков 0,06. Значит остаются случаи, когда не сбит один из бомбардировщиков, а сбит другой. Из всех вероятных событий 1, вычитаем оба этих случая.
1-0,56-0,06= 0,42-0,06=0,38 - вероятность, что сбит один бомбардировщик, и не сбит другой.
Если считать по-другому:
Сбит первый 1-0,7=0,3, а не сбит второй 0,8. Значит вероятность этого случая 0,3*0,8=0,24
Сбит второй 1-0,8=0,2, а не сбит первый 0,7. Значит вероятность уже этого случая равна 0,2*0,7=0,14.
Складываем оба этих случая 0,24+0,14=0,38. - опять тот же ответ.
ответ: вероятность равна 0,38 - сбит один из бомбардировщиков, а не сбит другой.
В году в среднем 365 дней. В среднем 52-53 понедельника. Пусть все числа в году будут под номерами от 1 до 365. Тогда 13 число месяца ( начиная с января) встречается в следующие по счету дни: 13 , 13+31= 44 , 44+28= 72 , 72+31=103, 103+30=133, 133+31= 164, 164+30= 194, 194+31= 225, 225+30 = 255, 255+31= 286, 286+30 = 316, 316+31 = 347 Теперь сколько раз повторяются дни недели (разделим на 7, посмотрим остатки) 13:7= 1 ост.6 72 :7 = 10 ост.2 103: 7 = 14 ост. 5 133: 7= 19 ост.0 164:7 = 23 ост. 3 194:7= 27 ост.5 225 : 7=32 ост.1 255 :7 =36 ост.3 286 :7=40 ост. 6 316 : 7= 45 ост.1 347:7=49 ост.4 Если мыслить логически , то все остатки от 0 до 6 ( пн.-воскр.) присутствуют , т.е. на 13 число может выпасть любой день недели. Остаток 0 - выпадает один раз , значит наименьшее количество понедельников с 13 числом - 1 день в году. Остаток 3 - выпадает больше раз, чем все остальные числа - 3 раза , значит наибольшее количество понедельников с 13 числом - 3 раза в год . ответ: 3 раза в год - наибольшее количество понедельников с 13 числом. Может и можно решить как-то проще, но .. я не знаю как.