1. Нам нужно найти знаменатель q, который должен быть отрицательным, т.к. прогрессия знакочередующаяся.
Выражаем третий и пятый члены прогрессии через ее первый член и знаменатель: b3 = 3q²; b₅ = 3q⁴.
Зная, что их сумма равна 60, составляем уравнение:
3q²+3q⁴=60
3q⁴+3q²-60=0 /3
q⁴+q²-20=0 - биквадратное уравнение
q²=t
t²+t-20=0
По теореме Виета: t₁ = -5 - не подходит, т.к. q²≠ -5
t₂ = 4 ⇒ q²=4
Нас интересует только отрицательный корень. q=-2
2. Находим b₂.
b₂ = b₁ q
b₂ = 3·(-2) = -6
ответ. -6
Преобразуем к удобному для метода интервалов виду:
(6^(x+5) - 6) / (2^(x-1) - 2) <=0 (в числителе поменяли знак и поменяли знак нер-ва, в знаменателе от основания 0,5 перешли к основанию 2).
Числитель обращается в 0 при:
6^(x+5) - 6 = 0, х+5 = 1, х = -4.
Знаменатель обращается в 0 при:
2^(x-1) - 2 = 0, х-1 = 1, х = 2.
Метод интервалов ( удобно, что основания степеней >1):
( + ) ( - ) ( +)
:о
-4 2
Наша область: х прин [-4; 2).
В нее входят целые числа: -4, -3, -2, -1, 0, 1
Их сумма: S = -4-3-2-1+1 = -9
ответ: - 9.
1дм.больше чем 80 см