ответ:
всего двузначных чисел: 99-9=90 (от наибольшего двузначного числа отнимаем количество однозначных чисел)
если число четное и кратное 3, (то есть делится на 2 и на 3) то оно делится на 2*3=6
не трудно догадаться, что наименьшее такое число: 12
наибольшее: 96
чтобы без перебора узнать, сколько таких чисел (n), воспользуемся свойствами арифметической прогрессии:
a_n=a_1+(n-1)*d \\ \\ a_n=96 \\ a_1=12 \\ d=6 \\ \\ 96=12+(n-1)*6 \\96=12+6n-6 \\ 6n=90 \\ \\ n=\frac{90}{6}= 15
ну и наконец, чтобы найти вероятность выбора этого числа, нужно число благоприятных исходов поделить на число всех исходом (то есть "количество четных двузначных чисел кратных 3" поделить на "количество двузначных чисел")
p=\frac{15}{90}=\frac{1}{6} \\ \\ otbet: \ \frac{1}{6}
ответ:Каждые уравнения решаются по своему. В квадратных нужно решать через дискриминант по специальной формуле. Где то нужно вынести за скобки, к примеру (2х^2-х)=0 тут выносишь икс за скобку и пишешь либо х=0 либо 2х-1=0, следовательно корни уравнения буду х=0 и х=1/2. Есть так же уравнения решаемые по схеме Горнера. В таких уравнениях содержатся степени больше чем 2. Там тоже своя система. Ну а логарифмические и показательние так это вообще отдельная тема! Так что, дорогой друг, тут так все и не объяснить)
Пошаговое объяснение:
----------------------------
Углы :
OTF
OTC
CTF