ответ: 37695 . Число может быть как больше, так и меньше , чем число 37698.
Ближайшее меньшее число, у которого цифры не повторяются : 37695.
Ближайшее большее число, у которого цифры не повторяются : в единицах: 9 - не походит , т.к. цифры повторяются. в десятках стоит 9 , если поставить число больше, то идет переход уже на сотни. Получается, что самое ближайшее число - это меньшее число , т.е. 37695.
Задание немного некорректное. Все двузначные числа : от 10 до 99 ( от 10 до 19 - 10 чисел , и так 9 раз) ⇒ 90 двузначных чисел всего 90×2= 180 цифр могут быть написаны на доске всего. ответ : 180 цифр .
Но среди них есть и повторяющиеся цифры... Если исходить из того, что цифры повторяются , то мы используем для записи числа всего 9 цифр (от 0 до 9).
Для нахождения точек пересечения с осью Х x^4-4x^2=0 х1=0; х2=2; х3=-2; Для нахождения экстреммумов функции нужно взять производную и прировнять ее 0 f(x)=x^4-4x^2 => f'(x)=4*x^3-8x=0 Корни: х1=0; х2=2^0.5; х3=-2^0.5; (корень квадратный из 2) теперь нужно узнать, что это за точки минимумы или максимумы, возмем значение слева и справа от точки и подставим в уранение если знак меняется с + на - значит максимум если наоборот минимум -2^0.5 0 2^0.5 ---*---о*о*---о*-- -2 -1 1 2
x=0 => y= 0 x=-2^0.5 => y= -4 x=2^0.5 => y= -4
x=-2 => y= 0 x=-1 => y=-3 x=1 => y=-3 x=2 => y= 0
Значение функции меняется от -2 до -2^0.5 функция убывает от 0 до -4 , а от -2^0.5 до -1 ворастает от -4 до -3 следовательно f(-2^0.5) минимум. Значение функции меняется от -1 до 0 функция возрастает от -3 до 0 , а 0 до 1 убывает от 0 до -3 следовательно f(0) максимум. Значение функции меняется от 1 до 2^0.5 функция убывает от -3 до -4 , а от 2^0.5 до 2 ворастает от -4 до 0 следовательно f(2^0.5) минимум.
Исследование завершено Точки пересечения с осью Х х1=0; х2=2; х3=-2; Минимум (-2^0.5;-4) и (2^0.5;-4) Максимум (0;0)
a=b-катеты; c-гипотенуза
ответ: 14.