М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
yuliabler
yuliabler
02.01.2021 12:59 •  Математика

Проведи эксперименты и запиши выводы в рабочей тетради. эксперимент 1, закрой фото ладошкой. ты его видиш? нет. это потому, что лапочка не прозрачна. убери лавочку. сейчас между рисунком и тобой только воздух. сквозь него ты чё-то видишь фото. сделай вывод. эксперимент 2,тебе понадобятся прозрачные цветные стёрли лист белой бумаги .положи перед собой лист белой бумаги. посмотри на него сквозь цветные стёкла что происходит? если убрать светное стелы школу, то снова видишь белый лист бумаги. сделай вывод.

👇
Ответ:
klanana
klanana
02.01.2021
А это случайно взято не из пособия "Как стать Капитаном Очевидностью"?
4,8(11 оценок)
Открыть все ответы
Ответ:
Nastenka335
Nastenka335
02.01.2021

Пошаговое объяснение:

Решение. Введем событие: X = (Среди выбранных хотя бы одно изделие первого сорта).  Рассмотрим противоположное ему событие: X =(Среди выбранных нет изделий первого сорта).  

 

Используем классическое определение вероятности:  

m

P

n = , где m – число исходов, благоприятствующих осуществлению события, а n – число всех равновозможных элементарных исходов.  

 

3 25

25! 23 24 25

2300

3!22! 1 2 3

n C

⋅ ⋅ = = = = ⋅ ⋅

- число выбрать любые 3 изделия из 25.  

3 10

10! 8 9 10

120

3!7! 1 2 3

m C

⋅ ⋅ = = = = ⋅ ⋅

- число различных выбрать 3 изделия второго сорта  

(из 10).  Искомая вероятность равна ( ) ( ) 120 109 1 1 1 0,948. 2300 115 m P X P X n = − = − = − = ≈  

 

ответ: 0,948.  

 

 

 

Задача 2. На отрезке [ ] 0;2 наудачу выбраны два числа x и y . Найдите вероятность того, что эти числа удовлетворяют неравенству 2 4 4 x y x ≤ ≤ .  

 

Решение. Используем геометрическое определение вероятности. Сделаем схематический чертеж. Берем числа , x y из квадрата [ ] [ ] 0;2 0;2 × .  

 

Рассмотрим условие 2 4 4 x y x ≤ ≤ Строим линии:  

1)  

2

2 4 , . 4 x y x y ≤ ≤

 область выше параболы  

2

4 x y = .  

2)  

4 4 , . y x y x ≤ ≤

область ниже прямой y x = .  

 

Контрольная работа выполнена на сайте www.MatBuro.ru ©МатБюро. Решение задач по математике, статистике, теории вероятностей  

 

 

 

Таким образом, вероятность p равна отношению площади закрашенной фигуры (в которой выполняются условия 1 и 2) к площади всей фигуры (квадрата):  

.

.

фиг

квад

S

p

S =  

 

Площадь квадрата . 2 2 4 квадS = ⋅ = .  Площадь закрашенной области  22 2 2 3 2 3 . 0 0 1 1 1 1 4 2 2 . 4 2 12 2 12 3ô èã x S x dx x x       = − = − = − =            ∫  

 

Тогда вероятность .

.

4/3 1

0,333

4 3

ô èã

êâàä

S

p

S = = = = .  

 

ответ: 0,333.  

 

 

 

Задача 3. Дана схема включения элементов. Вероятность отказа каждого элемента в течение времени Т равна 0,5. Вычислить вероятность отказа всей цепи.  

 

 

 

Контрольная работа выполнена на сайте www.MatBuro.ru ©МатБюро. Решение задач по математике, статистике, теории вероятностей  

 

 

Решение. Рассмотрим события:  

i A  = (Элемент с номером i  откажет), 1,...,6 i = , ( ) 0,5 i P A = , ( ) 0,5 i P A = .  

Искомое событие B = (Цепь откажет), противоположное ему: B = (Цепь работает безотказно).  Выразим событие B через i A . Учитываем, что последовательному соединению отвечает произведение событий, а параллельному – сумма событий. ( ) ( ) 1 2 3 4 5 6 B A A A A A A = ⋅ + ⋅ + + .  

 

Выразим вероятность события B .  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 3 1 1 1 1 1 1 0,5 1 0,5 1 0,5 0,672. P B P B P A A A A A A P A P A A P A A A P A P A P A P A P A P A = − = ⋅ + ⋅ + + = = − ⋅ + ⋅ + + = = − ⋅ − ⋅ − = = − ⋅ − ⋅ − ≈

 

 

Использовали формулу для независимых в совокупности событий 1,... n A A :  

1 2 1 2 1 2 1 2 ( ... ) 1 ( ... ) 1 ( ... ) 1 ( ) ( ) ... ( ) n n n n P A A A P A A A P A A A P A P A P A + + + = − + + + = − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ .  

 

ответ: 0,672.  

 

 

Задача 4. Детали изготавливаются на двух станках. На первом станке – 40%, на втором – 60%. Среди деталей, изготовленных на первом станке, брак составляет 2%, на втором – 1,5%. Для контроля случайным образом взята 1 деталь. Найти вероятность событий: А) деталь бракованная,  Б) деталь изготовлена на 1 станке, если при проверке она оказалась не бракованной.  

 

Решение. Введем полную группу гипотез: 1H = (Деталь изготовлена первым станком), 2H = (Деталь изготовлена первым станком).  

 

По условию: ( 1) 0,4 P H = , ( 2) 0,6 P H = .  

 

Введем событие A = (Деталь оказалась бракованной). Условные вероятности даны в задаче: ( | 1) 0,02 P A H = , ( | 2) 0,015 P A H = .  

 

1) Вероятность события A найдем по формуле полной вероятности  ( ) ( | 1) ( 1) ( | 2) ( 2) 0,4 0,02 0,6 0,015 0,017 1,7%. P A P A H P H P A H P H = + = ⋅ + ⋅ = =  

 

2) Найдем вероятность ( ) 1| P H A того, что деталь изготовлена на первом станке, если она при проверке оказалась без брака.

4,4(6 оценок)
Ответ:
Cyxapuk2
Cyxapuk2
02.01.2021

Пошаговое объяснение:

Решение. Введем событие: X = (Среди выбранных хотя бы одно изделие первого сорта).  Рассмотрим противоположное ему событие: X =(Среди выбранных нет изделий первого сорта).  

 

Используем классическое определение вероятности:  

m

P

n = , где m – число исходов, благоприятствующих осуществлению события, а n – число всех равновозможных элементарных исходов.  

 

3 25

25! 23 24 25

2300

3!22! 1 2 3

n C

⋅ ⋅ = = = = ⋅ ⋅

- число выбрать любые 3 изделия из 25.  

3 10

10! 8 9 10

120

3!7! 1 2 3

m C

⋅ ⋅ = = = = ⋅ ⋅

- число различных выбрать 3 изделия второго сорта  

(из 10).  Искомая вероятность равна ( ) ( ) 120 109 1 1 1 0,948. 2300 115 m P X P X n = − = − = − = ≈  

 

ответ: 0,948.  

 

 

 

Задача 2. На отрезке [ ] 0;2 наудачу выбраны два числа x и y . Найдите вероятность того, что эти числа удовлетворяют неравенству 2 4 4 x y x ≤ ≤ .  

 

Решение. Используем геометрическое определение вероятности. Сделаем схематический чертеж. Берем числа , x y из квадрата [ ] [ ] 0;2 0;2 × .  

 

Рассмотрим условие 2 4 4 x y x ≤ ≤ Строим линии:  

1)  

2

2 4 , . 4 x y x y ≤ ≤

 область выше параболы  

2

4 x y = .  

2)  

4 4 , . y x y x ≤ ≤

область ниже прямой y x = .  

 

Контрольная работа выполнена на сайте www.MatBuro.ru ©МатБюро. Решение задач по математике, статистике, теории вероятностей  

 

 

 

Таким образом, вероятность p равна отношению площади закрашенной фигуры (в которой выполняются условия 1 и 2) к площади всей фигуры (квадрата):  

.

.

фиг

квад

S

p

S =  

 

Площадь квадрата . 2 2 4 квадS = ⋅ = .  Площадь закрашенной области  22 2 2 3 2 3 . 0 0 1 1 1 1 4 2 2 . 4 2 12 2 12 3ô èã x S x dx x x       = − = − = − =            ∫  

 

Тогда вероятность .

.

4/3 1

0,333

4 3

ô èã

êâàä

S

p

S = = = = .  

 

ответ: 0,333.  

 

 

 

Задача 3. Дана схема включения элементов. Вероятность отказа каждого элемента в течение времени Т равна 0,5. Вычислить вероятность отказа всей цепи.  

 

 

 

Контрольная работа выполнена на сайте www.MatBuro.ru ©МатБюро. Решение задач по математике, статистике, теории вероятностей  

 

 

Решение. Рассмотрим события:  

i A  = (Элемент с номером i  откажет), 1,...,6 i = , ( ) 0,5 i P A = , ( ) 0,5 i P A = .  

Искомое событие B = (Цепь откажет), противоположное ему: B = (Цепь работает безотказно).  Выразим событие B через i A . Учитываем, что последовательному соединению отвечает произведение событий, а параллельному – сумма событий. ( ) ( ) 1 2 3 4 5 6 B A A A A A A = ⋅ + ⋅ + + .  

 

Выразим вероятность события B .  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 2 3 1 1 1 1 1 1 0,5 1 0,5 1 0,5 0,672. P B P B P A A A A A A P A P A A P A A A P A P A P A P A P A P A = − = ⋅ + ⋅ + + = = − ⋅ + ⋅ + + = = − ⋅ − ⋅ − = = − ⋅ − ⋅ − ≈

 

 

Использовали формулу для независимых в совокупности событий 1,... n A A :  

1 2 1 2 1 2 1 2 ( ... ) 1 ( ... ) 1 ( ... ) 1 ( ) ( ) ... ( ) n n n n P A A A P A A A P A A A P A P A P A + + + = − + + + = − ⋅ ⋅ ⋅ = − ⋅ ⋅ ⋅ .  

 

ответ: 0,672.  

 

 

Задача 4. Детали изготавливаются на двух станках. На первом станке – 40%, на втором – 60%. Среди деталей, изготовленных на первом станке, брак составляет 2%, на втором – 1,5%. Для контроля случайным образом взята 1 деталь. Найти вероятность событий: А) деталь бракованная,  Б) деталь изготовлена на 1 станке, если при проверке она оказалась не бракованной.  

 

Решение. Введем полную группу гипотез: 1H = (Деталь изготовлена первым станком), 2H = (Деталь изготовлена первым станком).  

 

По условию: ( 1) 0,4 P H = , ( 2) 0,6 P H = .  

 

Введем событие A = (Деталь оказалась бракованной). Условные вероятности даны в задаче: ( | 1) 0,02 P A H = , ( | 2) 0,015 P A H = .  

 

1) Вероятность события A найдем по формуле полной вероятности  ( ) ( | 1) ( 1) ( | 2) ( 2) 0,4 0,02 0,6 0,015 0,017 1,7%. P A P A H P H P A H P H = + = ⋅ + ⋅ = =  

 

2) Найдем вероятность ( ) 1| P H A того, что деталь изготовлена на первом станке, если она при проверке оказалась без брака.

4,8(14 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ