Пошаговое объяснение:
Минимальный возможный объём бочки:
10 * 9 = 90 (л)
Максимально возможный объём бочки:
12 * 9 = 108 (л)
В полученных пределах лежит единственно возможный вариант — 2, т.е. 100 литров.
Давайте дополнительно узнаем сколько и каких вёдер было использовано для наполнения 100 литровой бочки.
Итак, дед может заполнить 9 вёдрами бочку объёмом 100 литров.
Число 100 имеет на конце 0. По условию задачи мы имеем два ведра объёмом 10 л и 12 л.
Так как для наполнения 9 вёдрами 100-литровой бочки мы не можем обойтись 10-литровым ведром ( 10 * 9 = 90), значит в наполнении обязательно участвовало 12-литровое ведро.
Для начала давайте подберём такое число, при умножении на которое 12 л давало бы на конце 0. Ближайшая от нуля цифра — 5
12 * 5 = 60
Мы истратили 5 из 9 ведер на 12 литровое ведро. Осталось 9 — 5 = 4 для 10 литровых вёдер. Проверим:
10 * 4 = 40
60 + 40 = 100 (л)
В решении.
Пошаговое объяснение:
1) Решить неравенство:
2(5х - 6) >= 8x + 4
10x - 12 >= 8x + 4
10x - 8x >= 4 + 12
2x >= 16
x >= 8.
Решение неравенства: х∈[8; +∞).
Неравенство нестрогое, скобка квадратная, а знаки бесконечности всегда с круглой скобкой.
2) (-∞; 12] (-18; +∞)
Отметить значения на координатной прямой:
а) начертить числовую прямую, отметить - бесконечность, 0, 12. Штриховка от - бесконечности вправо до 12. Кружочек у 12 закрашенный.
б) начертить числовую прямую, отметить -18, 0, + бесконечность.
Штриховка от - 18 до + бесконечности вправо. Кружочек у -18 закрашенный.
в) если это одно неравенство, наложить штриховки одна на другую, получим решение неравенства х∈[-18; 12], пересечение (двойная штриховка).
3) Решить неравенства с модулем:
а) |x| < 7,9
x < 7,9 x > -7,9
Решение неравенства: х∈(-7,9; 7,9), пересечение.
Неравенство строгое, скобки круглые.
б) |x| <= 13,5
x <= 13,5 x >= -13,5
Решение неравенства: х∈[-13,5; 13,5], пересечение.
Неравенство нестрогое, скобки квадратные.
4) Решить систему неравенств:
3,7х + 28 > -4,3x - 12
24,3x + 16,6 <= 17,3x + 19,4
3,7x + 4,3x > -12 - 28
24,3x - 17,3x <= 19,4 - 16,6
8x > -40
7x <= 2,8
x > -40/8
x <= 2,8/7
x > -5
x <= 0,4
Решение первого неравенства: х∈(-5; +∞);
Решение второго неравенства: х∈(-∞; 0,4].
Решение системы неравенств: (-5; 0,4], пересечение.
Первое неравенство строгое, скобки круглые, второе нестрогое, скобка квадратная.