, где
Пошаговое объяснение:
В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.
У числителя два неравных корня, если дискриминант больше нуля:
Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:
Подставляем найденный x в уравнение:
Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции равна . При a < 1/4 производная положительна, кроме того, , , поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для довольно-таки громоздкое, по графику
, где
Пошаговое объяснение:
В числителе стоит квадратный трёхчлен, у него может быть не более 2 корней. Значит, чтобы у уравнения было ровно 2 различных корня, числитель должен иметь 2 корня, и ни один из корней числителя не должен быть корнем знаменателя.
У числителя два неравных корня, если дискриминант больше нуля:
Найдём, при каких a хотя бы какой-то корень числителя является корнем знаменателя:
Подставляем найденный x в уравнение:
Один корень (a = 0) находится легко, еще один корень можно выписать по формулам для кубических уравнений или найти графически. Можно показать, что что этот корень единственный и удовлетворяет неравенству 1 - 4a > 0: производная функции равна . При a < 1/4 производная положительна, кроме того, , , поэтому f(a) имеет корень на отрезке [-1, 0]. Выражение для довольно-таки громоздкое, по графику
следовательно уравнение основания трапеции имеет вид
y=-x+d
если эта прямая проходит через точку A(4;0), то координаты этой точки удовлетворяют нашему уравнению, т.е.
0=-4+d отсюда находим d=4.
ответ: уравнение основания AD: y=4-x
Координаты точки D найти проблематично, т.к. в условии не хватает данных для более точной идентификации трапеции, нет ни длин сторон, ни сведений о ее равнобедренности или каких-нибудь углах. Поэтому любая точка на найденной прямой в принципе может быть точкой D, например (0;4)