Пусть a и b - стороны левого верхнего прямоугольника, тогда b и c - стороны правого верхнего прямоугольника, c и d - стороны правого нижнего прямоугольника, b и d - левого нижнего прямоугольника. Тогда: Р₁=2(a+b)=24 Р₂=2(a+c)=28 Р₃=2(c+d)=16 Р₄=2(b+d) - ? Отнимем третий периметр от второго. Получим: P₂₃=Р₂-Р₃=28-16=12 С другой стороны: P₂₃=Р₂-Р₃=2(a+c)-2(c+d)=2(a+c-c-d)=2(a-d) Значит, 2(a-d)=12 Теперь отнимем полученное от первого периметра: Р₁-P₂₃=24-12=12 С другой стороны: Р₁-P₂₃=2(a+b)-2(a-d)=2(a+b-a+d)=2(b+d) Значит, 2(b+d)=12, что и требовалось найти.
Пошаговое объяснение:
Чтобы сложить неравенства с положительными числами, надо сложить их почленно:
4,7+5,8>3,8+3,7
10,5>7,5
Умножать неравенства одного знака можно только с положительными числами. Поэтому представим первое неравенство
-3,2<10-3,7 или 0,5<10
тогда произведение:
0,5*0,8<10*3,2
0,4<32