a^2*x^2+ax+1-21a^2=0
из т. Виета
x1+x2=-1/a
x1*x2=1/a^2-21
---
x1*x2=(x1+x2)^2-21
x1^2+x1*x2+x2^2=21
(x1+x2/2)^2=21-3x^2/4
если правая часть отрицательна уравнение не имеет смысла, найдем те значения x2 при которых уравнение будет иметь смысл.
28-x2^2>0
-5<x2<5 так как корни целые.
Значит максимальное значение которые может принимать x2 это 5(ТК.система симметрична x1 тоже будет <=5)
осталось понять, при x2=5 есть целые корни или нет, подставим в наше уравнение.
(x1+5/2)^2=3(28-25)/4
x1=(-5+-3)/2=-1;-4.
ответ наибольшее число которое может являться корнем это 5.
b7=b1×q^6
128=b1×2^6
128=b1×64
b1=2
S7= b1 (q^6-1)/(1-q)
S7=2 (64-1)/(1-2)
S7=-126