Давайте определим сколько замечательных чисел среди трехзначных. Трехзначные от 100 до 999. Значит сумма цифр в этих трехзначных варьируется от 1 до 27 (100 и 999 соответственно) . Значит должно быть 27 замечательных (на каждую сумму по одному замечательному) . Первым и минимальным будет 100 (сумма равна 1). Следующие от 101 до 109 (сумма от 2 до 10). Сумма=11 у числа 191. Следующие от 192 до 199 (сумма от 12 до 19). Сумма 20 у числа 299. И так далее. 21 - 399, 22 - 499, ..27 - 999. В итоге нужно посчитать сумму следующих чисел: от 100 до 109 включительно, от 192 до 199 включительно, и всех трехзначных чисел, оканчивающихся на "99", число сотен которых равно "3" и больше. Но этот вариант годен, если рассматривать, что замечательное число выбирается из стольки же значных чисел. А это скорее всего не так. Поэтому нужно из моего списка отсеить все числа, сумма цифр которых меньше 19 (99 - двузначное, сумма равна 18). Поэтому рассматриваем как замечательные числа числа от 199. То есть среди трехзначных чисел замечательными являются все заканчивающиеся на "99". Их сумма = (2+3+4+5+6+7+8+9+10)*100-9=5391
Рассмотрим число : нам нужно определить, на какую цифру заканчивается это число.выпишем последние цифры степеней двойки: =1, =4, =8, =16 (берем последнюю цифру и умножаем на 2), = 6*2=12 и т.д они будут чередоваться в такой последовательности: 2, 4, 8, последняя цифра степени зависит от того, с каким остатком показатель степени делится на 4. (например, 1, 5, 2013) ⇒ ⇒последняя цифра числа =3 возьмем число -1: оно будет заканчиваться на 2 (3-1) ⇒ ⇒ это число составное, т.к. будет делиться не только на само себя и 1, но и на 2 (по признаку делимости на 2)