За однаковою ціною купили 2 зошити у клітинку і 3 - у лінійку, заплативши за всі зошити 8 грн. скільки гривень заплатили окремо за зошити у клітинку? у лінійку?
ОДЗ x,y>0 возведем оба уравнения в квадрат (2√x-√y)²=3² (√x√y)²=2²
4x-4√x√y+y=9 √x√y=2 по условию задачи xy=4
4x-8+y=9 xy=4
4x+y=17 xy=4 тут можно методом подбора понять что x=4 а y=1
а если метод подбора неубедителен то надо из первого уравнения выразить y через х и подставить во второе уравнение получится квадратное уравнение y=17-4x x(17-4x)=4 17x-4x²=4, 4x²-17x+4=0 , x1-2=(17+-√289-64)/8=(17+-15)/8 x1=4, x2=1/4 y1=17-16=1 y2=17-1=16 1) первое решение x=4, y=1 2) второе решение не подходит так как не обращает в верное равенство первое уравнение, так иногда бывает при возведении в квадрат
Для левой части ур-ия применим формулу суммы синусов: Sin x + Sin y = 2Sin ((x + y)/2) · Cos ((x - y)/2) А для правой части формулы понижения степени: Cos² x = (1 + Cos 2x) / 2 Sin² x = (1 - Cos 2x) / 2
То есть: 2Sin 4x · Cos x = 2 · ((1 + Cos 4x)/2 - (1 - Cos 6x)/2))
2Sin 4x · Cos x = 1 + Cos 4x - 1 + Cos 6x
2Sin 4x · Cos x = Cos 4x + Cos 6x
Для правой части ур-ия применим формулу суммы косинусов: Cos x + Cos y = 2Cos ((x + y)/2) · Cos ((x - y)/2)
2Sin 4x · Cos x = 2Cos 5x * Cos x
2Sin 4x · Cos x - 2Cos 5x * Cos x = 0
Выносим общий множитель 2Cos x: 2Cos x · (Sin 4x - Cos 5x) = 0
Отсюда: Cos x = 0 ⇒ x = ±π/2 + 2πk, k — целое
Sin 4x - Cos 5x = 0
Cos (π/2 - 4x) - Cos (5x) = 0
Применяем формулу разности косинусов: Cos x - Cos y = -2Sin ((x + y)/2) · Sin ((x - y)/2)
То есть: -2Sin ((π/2 + x)/2) · Sin ((π/2 - 9x)/2) = 0
1) Sin ((π/2 + x)/2) = 0 (π/2 + x)/2 = πk π/2 + x = 2πk x = -π/2 + 2πk
за зошити в кліт 1,6 х 2 =3.2
зош в лінійку 1.6 х 3 =4.8