Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Для точек М и А - это длина стороны АМ треугольника АСМ.
СМ - перпендикулярен плоскости АВСD, значит перпендикулярен любой прямой, проходящей через его основание С.⇒
∆ АСМ- прямоугольный.
АМ=√(CM²+AC²)
В данной трапеции АВ =24 (- меньшая боковая сторона),
CD=25.
ВD - биссектриса прямого угла.
∠АВD=45°, следовательно, ∠АDB =45°, ∆ АВD- равнобедренный и AD=AB=24
Опустим из С перпендикуляр СН на АD.
Отношение сторон ∆ СНD – из Пифагоровых троек, НD=7( проверьте).
Тогда ВС=24-7=17.
По т.Пифагора АС²=24²+17²=865
АМ=√(735+865)=√1600=40 (ед. длины)
Подробнее - на -
Расстояние между двумя точками — это длина отрезка, что соединяет эти точки.
Для точек М и А - это длина стороны АМ треугольника АСМ.
СМ - перпендикулярен плоскости АВСD, значит перпендикулярен любой прямой, проходящей через его основание С.⇒
∆ АСМ- прямоугольный.
АМ=√(CM²+AC²)
В данной трапеции АВ =24 (- меньшая боковая сторона),
CD=25.
ВD - биссектриса прямого угла.
∠АВD=45°, следовательно, ∠АDB =45°, ∆ АВD- равнобедренный и AD=AB=24
Опустим из С перпендикуляр СН на АD.
Отношение сторон ∆ СНD – из Пифагоровых троек, НD=7( проверьте).
Тогда ВС=24-7=17.
По т.Пифагора АС²=24²+17²=865
АМ=√(735+865)=√1600=40 (ед. длины)
(х+8):4=3, х+8=3*4,х+8=12, х=12-8, х=4
(30-х)-7=9, 30-х=9+7, 30-х=16, х=30-16, х=14
(19+х)-8=16, 19+х=16+8, 19+х=24, х=24-19, х=5
(х-7)+12=25, х-7=25-12, х-7=13, х=13+12,х=20