2 и 5 корни уравнения.
Пошаговое объяснение:
Начнем мы решение уравнения x^6 = (7x - 10)^3 с того, что извлечем кубический корень из обеих его частей и получаем:
x^2 = 7x - 10;
Соберем все слагаемые в левой части:
x^2 - 7x + 10 = 0;
Решаем полученное квадратное уравнение. Вычислим прежде всего дискриминант уравнения:
D = b^2 - 4ac = (-7)^2 - 4 * 1 * 10 = 49 - 40 = 9.
Вычислим корни уравнения по формулам:
x1 = (-b + √D)/2a = (-(-7) + √9)/2 * 1 = (7 + 3)/2 = 10/2 = 5;
x2 = (-b - √D)/2a = (-(-7) - √9)/2 * 1 = (7 - 3)/2 = 4/2 = 2
1) 9 - 2 · (-4х + 7) = 7
2 · (-4х + 7) = 9 - 7
2 · (-4х + 7) = 2
-4х + 7 = 2 : 2
-4х + 7 = 1
-4х = 1 - 7
-4х = -6
х = -6 : (-4)
х = 1,5
Проверка: 9 - 2 · (-4 · 1,5 + 7) = 7
9 - 2 · (-6 + 7) = 7
9 - 2 · 1 = 7
7 = 7
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2) 9 + 10 · (3х - 10) = 2
10 · (3х - 10) = 2 - 9
10 · (3х - 10) = -7
3х - 10 = -7 : 10
3х - 10 = -0,7
3х = 10 - 0,7
3х = 9,3
х = 9,3 : 3
х = 3,1
Проверка: 9 + 10 · (3 · 3,1 - 10) = 2
9 + 10 · (-0,7) = 2
9 + (-7) = 2
2 = 2
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
3) 7 + 9 · (4х + 5) = -2
9 · (4х + 5) = -2 - 7
9 · (4х + 5) = -9
4х + 5 = -9 : 9
4х + 5 = -1
4х = -1 - 5
4х = -6
х = -6 : 4
х = -1,5
Проверка: 7 + 9 · (4 · (-1,5) + 5) = -2
7 + 9 · (-1) = -2
7 - 9 = -2
-2 = -2
минус в данной задаче (єто тирэ) значит слово "набрал" а не знак минус
1) 3/5a страниц- набрал в первый день оператор
2) 1/4a страниц - набрал во второй день оператор
3) а-3/5a-1/4a=(1-3/5-1/4)a=(2/5-1/4)a=(8/20-5/20)a=3/20a страниц - осталось набрать оператору
ответ: 3/20a страниц