Первое решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 = √6/2. Для площади S этого треугольника имеют место равенства . Откуда находим AH = √3/3
Второе решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Треугольники AOA1 иHOA подобны по трем углам. Следовательно, AA1:OA1 = AH:AO. Откуда находим AH = √3/3.
Третье решение. Пусть O – середина отрезка BD. Прямая BD перпендикулярна плоскости AOA1. Следовательно, плоскости BDA1 и AOA1 перпендикулярны. Искомым перпендикуляром, опущенным из точки A на плоскость BDA1, является высота AH прямоугольного треугольника AOA1, в котором AA1 = 1, AO = , OA1 =√6/2 . Откуда sin угла AOA1=√6/3 и, следовательно, AH=AO* sin угла AOH=√3/3
УМНОЖЕНИЕ 1. Произведение двух чисел не изменяется при перестановке множителей. Это свойство умножения называют ПЕРЕМЕСТИТЕЛЬНЫМ. С букв его записывают так: a+b=b+a 2. Чтобы умножить число на произведение двух чисел, можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель. Это свойство умножения называют сочетательным. С букв его записывают так: a*(b*c)=(a*b)*c 3.Сумма n слагаемых, каждое из которых равно 1, равна n. Поэтому верно равенство 1*n=n 4. Сумма n слагаемых, каждое из которых равно нулю. Поэтому верно равенство 0*n=0 5.Чтобы переместительное свойство умножения было верно при n = 1 и n = 0, условились, что m*1=m и m*0=0. 6 Перед буквенными множителями обычно не пишут знак умножения: вместо 8 * x пишут 8x, вместо a*b пишут ab. 7. Опускают знак умножения и перд скобками. Например, вместо 2*(a+b) пишут 2(a+b), а вместо (x+2) * (y+3) пишут (x+2)(y+3) Вместо (ab)c пишут abc. 8.Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо.
6+8+1=15(см)
94-4=90(дм)
8+41=49(см)