М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
HeZnAiKaxXx
HeZnAiKaxXx
09.11.2022 06:30 •  Математика

Есть 19 гирек массами 1г, 2г, 19г, из которых 9 железных, 9 бронзовых и одна золотая. известно, что масса всех бронзовых гирек на 90г меньше, чем масса всех железных. найдите массу золотой гирьки.

👇
Ответ:
Золото как известно тяжелое и гирька золотая одна, то не сложно догадаться что вес уже известен - 19 грамм
4,7(45 оценок)
Открыть все ответы
Ответ:
EstrWite
EstrWite
09.11.2022

ответ:

Пошаговое объяснение:

Из условия следует, что уравнение f(x)-x=0 не имеет решений. Поскольку f(x)-x - непрерывная функция, то она либо всюду положительна, либо всюду отрицательна, иначе она бы в некоторой точке принимала значение 0 (по теореме о промежуточном значении). Пусть f(x)-x всюду положительна. Это значит, что для любого x выполнено неравенство f(x)>x. Пусть f(x)=y. Тогда f(f(x))=f(y)>y=f(x)>x. Таким образом, при любом x f(f(x))-x>0, т.е. уравнение f(f(x))=x не имеет корней. Аналогичным образом, показываем, что уравнение f(f(x))=x не имеет корней и в том случае, когда для любого x выполнено неравенство f(x)<x.

4,5(44 оценок)
Ответ:
Натуральные числа - это числа начиная с 1, получаемые при счете, т.е положительные и целые.

Пусть a₀ и b₀ - этозначения, которые соответствуют наименьшему значению выражения a²+b².
Будем считать что a₀>b₀ (можно взять наоборот, тогда дальше в решении надо просто поменять буквы местами).
Если b₀=1 (так как минимальное значение натурального ряда чисел равно 1), то:
N= \frac{ a^{2} +1}{a-1}
значит а=2 или а=3, т.к. в остальных случаях N не является натуральным (значения выражения будут дроби).
При а=2 и а=3 N=5.

Пусть b₀>1, тогда:
N(ab₀-1)=a²+b²
ab₀N-N-a²-b₀²=0
a²-ab₀N+b₀²+N=0
Первым корнем этого уравнения будет а₀
Согласно теореме Виета второй корень уравнения равен а₁=b₀N-a₀ и он тоже является положительным и целым числом.
Из минимальности выражения а²+b² следует, что а₁>a₀.
Значит (а₁-1)(a₀-1)≥b₀(b₀+1) и (а₁-1)(a₀-1)=a₁a₀-(a₁+a₀)+1=b₀²+N-b₀N+1
Получается что b₀²+N-b₀N+1≥b₀(b₀+1).
Это неравенство невозможно при b₀>1.

Исходя из решения следует, что единственное значение N, которое является натуральным числом, при натуральных значениях а=2 и  b=1 это 5.
4,8(6 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ