Решение: Скорость сближения велосипедистов равна: 15-10=5 (км/час) Время сближения: 2 : 5=0,4 (час) Время движения (t) у обоих велосипедистов одинаковое. Первый велосипедист проедет расстояние: S1=15*t Обозначим количество кругов у первого велосипедиста за (n1) При количестве кругов n1, расстояние пройденное первым велосипедистом составит: S1=5*0,4*n1=2n1 Приравняем оба выражения S1 15t=2n1 Второй велосипедист проедет расстояние равное: S2=10*t Обозначим количество кругов у второго велосипедиста за (n2) При количестве кругов n2, расстояние пройденное вторым велосипедистом составит: S2=5*0,4*n2=2n2 Приравняем оба выражения S2 10t=2n2 Получилось два уравнения: 15t=2n1 10t=2n2 Разделим первое уравнение на второе, получим: 15t/10t=2n1/2n2 15/10=n1/n2 Делаем вывод, что минимальное количество кругов до встречи равно: n1=15 n2=10 Из первого уравнения 15t=2n1 найдём значение (t) t=2n1/15 подставим в это выражение n1=15 t=2*15/15=2 (часа)
ответ: Первый велосипедист впервые догонит второго велосипедиста через 2 часа.
A=3a+x A=18b+y A=24c+z x, y, z — остатки a, b, c — неполные частные (Т.к. Например, если 7:3, получится 2 и 1 в остатке, 7=3*2+1) x+y+z=21 Вычитаем из третьего уравнения второе: A-A=(24c+z)-(18b+y) 0=z-y+6*4c-6*3b 6*(4c-3b)=y-z 6 — чётное число, а значит значение левой части будет чётным ( любое число, умноженое на чётное, чётное). Раз слева получается чётное, то справа тоже, т.к. они равны. Раз y-z чётное, то y+z также чётное. 21 — нечётное, а значит, если 21-(y+z) получится, что x — нечётное. Остаток при деление на 3 равен либо 1, либо 2, нечётное из них только 1. ответ: 1
6+6+2+2
7+7+1+1