Пусть P(n) - это произведение цифр в числе n. Пусть под n подразумевается некоторый массив из чисел от 2017 до 20179999. То есть n пробегает эти значения. Наша цель в таком случае найти значение выражения P(n+11)-P(n); Все, чем будет отличаться P(n+11) от P(n) - последними значениями: 20179989+11=20180000, 20179990+11=20180001,...,20179999+11=20180010 - все это - новые числа. (1) Теперь сопоставим все одинаковые числа из массива P(n) массиву P(n+11). Их разница будет равна 0. Оставшиеся новые значения перечисленные сверху сопоставим числам 2017+11, 2018+11,...,2029+11. Но числа в (1) содержат 0 в записи, как и эти числа. То есть произведение цифр у обеих групп будет равна 0. Следовательно, сумма всех чисел в тетради мистера Фокса будет равна 0.
Число делится на 36, если у него есть признаки делимости на 4 и на 9. Число делится на 4, если число, составленное из последних двух цифр, делится на 4. Число делится на 9, если сумма его цифр делится на 9.
31*823* 3+1+8+2+3=17 - сумма цифр без двух звёздочек Последние две цифры 32 или 36 (делятся на 4)
1) Вместо последней звёздочки ставим цифру 2 17 + 2 = 19 - сумма цифр без первой звёздочки 19 + 8 = 27 - сумма цифр числа (делится на 9) Первая (*) - цифра 8; вторая (*) - цифра 2 Проверяем: 31(8)823(2) : 36 = 88562
2) Вместо последней звёздочки ставим цифру 6 17 + 6 = 23 - сумма цифр без первой звёздочки 23 + 4 = 27 - сумма цифр числа (делится на 9) Первая (*) - цифра 4; вторая (*) - цифра 6 Проверяем: 31(4)823(6) : 36 = 87451