Обозначим вершины треугольника АВС, основание высоты - Н. Длина окружности =2 π r 2 п r=50 π Коротко запись задачи выглядит так: r=50п:2п=25 32-25=7 Р= 2√(25²-7²)+2√(32²+24²)=128см Подробно: Высота равнобедренного треугольника - срединный перпендикуляр. Центр описанной окружности треугольника лежит на пересечении срединных перпендикуляров. Так как радиус меньше высоты треугольника, центр лежит на этой высоте. Обозначим центр О. Расстояние от вершины треугольника В до центра окружности О равно R Расстояние ОН от центра окружности до середины основания треугольника АВС 32-25=7 см Соединим центр О с вершиной угла основания. Получим треугольник АОН. АО= радиусу и равна 25 см Найдем половину основания по формуле Пифагора из треугольника АОН АН=√(25²-7²)=24 см Основание треугольникаАС равно 2*24=48см Из треугольника АВН найдем боковую сторону треугольника АВ АВ=√(32²+24²)=40смВС=АВ=40 см Периметр Δ АВС Р=2·40+48=128 см
Приравниваем ее нулю (3х-8) - (12х-17)=0
Решаем уравнение: 3х-8-12х+17=0
-9х=8-17
-9х=-9
х=(-9)/(-9)=1.