Сторона одного куба 9 сантиметров а другого 5 на сколько объем первого куба больше объема второго? на сколько площадь поверхности первого куба больше площади поверхность второго
На циферблате имеется 60 делений, на которые приходится 360 градусов. Значит, когда стрелка пройдёт 1 деление, то она переместиться на 360:60=6 градусов. Минутная стрелка за 15 мин пройдёт 6*15=90 градусов. Определим, сколько делений пройдёт часовая стрелка за то время, пока мин. стрелка проходит 15 минут, зная, что часовая стрелка проходит 5 делений за 1 час, то есть за то время, за которое минутная стрелка проходит 60 делений. 5 делений - 1 час (60 мин) х делений - 15 минут х=5*15:60=1,25 (делений) Теперь определим, на сколько градусов повернётся часовая стрелка, пока минутная поворачивается на 90 градусов (то есть минутная проходит 15 минут): 1 деление - 6 градусов 1,25 делений - х градусов х=1,25*6:1=7,5 (градусов) Угол между минутной и часовой стрелками составляет 90-7,5=82,5 градусов=82 градуса 30 минут
Всего конфет участвовало в игре: 19 + 43 = 62 Пусть у старшего вначале было Х конфет, у младшего - У конфет. 1) старший проиграл младшему половину, т.е Х : 2 = Х/2 Остаток старшего: Х - Х/2 = Х/2: Стало у младшего: У + Х/2; 2) младший проиграл старшему половину:, т.е. (У+Х/2) :2 = У/2 + Х/4; Стало у старшего: Х/2 + (У/2 + Х/4) = 3Х/4 + У/2 Осталось у младшего: У/2 + Х/4; 3) старший проиграл младшему половину: (3Х/4 + У/2) : 2 = 3Х/8 + У/4; Осталось у старшего: 3Х/8 + У/4; Стало у младшего: (У/2 + Х/4) + (3Х/8 + У/4) = 3У/4 + 5Х/8 Мы имеем систему уравнений: {3Х/8 + У/4 = 19; {3У/4 + 5Х/8 = 43; Умножаем первое уравнение на 3 и отнимаем второе: 3(3Х/8 + У/4) - (3У/4 - 5Х/8) = 3*19 - 43; 9Х/8 - 5Х/8 + 3У/4 - 3У/4 = 57 - 43; 4Х/8 = 14 ; Х = 2*14 = 28 (конфет); У = 62 - Х = 62 - 28 = 34 ( конфеты); ответ: До начала игры у старшего было 28 конфет, у младшего 34 конфеты. Проверка: 1) 28 - 28:2 = 14; 34 + 28:2 = 48; 2) 14 + 48:2 = 38; 48 - 48:2 = 24; 3) 38 - 38:2 = 19; 24 + 48:2 = 43; что соответствует условию.
486-150=336 На столько площадь поверхности