М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ника2569
ника2569
21.01.2020 19:33 •  Математика

Точка а расположена на координатном луче между числами. она лежит правее на 4 части от числа 2 и левее на частей от числа 3.какую дробь изображает точкаа

👇
Ответ:
mukaseevdaniil1
mukaseevdaniil1
21.01.2020
А) точка В расположена на координатном луче правее других (так как ее координата больше других)
б) точка А расположена на координатном луче левее других (так как ее координата наименьшая)
4,8(59 оценок)
Открыть все ответы
Ответ:
miloft
miloft
21.01.2020

{

Вероятностью (вероятностной мерой) называется мера (числовая функция) {\displaystyle \mathbf {P} }\mathbf {P} , заданная на множестве событий, обладающая следующими свойствами:

Неотрицательность: {\displaystyle \forall A\subset X\colon \mathbf {P} (A)\geqslant 0}\forall A\subset X\colon {\mathbf  P}(A)\geqslant 0,

Аддитивность: вероятность наступления хотя бы одного (то есть суммы) из попарно несовместных событий равна сумме вероятностей этих событий; другими словами, если {\displaystyle A_{i}A_{j}=\varnothing }A_{i}A_{j}=\varnothing  при {\displaystyle i\neq j}i\neq j, то {\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}{\displaystyle P\left(\sum _{i}A_{i}\right)=\sum _{i}\mathbf {P} (A_{i})}.

Конечность (ограниченность единицей): {\displaystyle \mathbf {P} (X)=1}{\mathbf  P}(X)=1,

В случае если элементарных событий X конечно, то достаточно указанного условия аддитивности для произвольных двух несовместных событий, из которого будет следовать аддитивность для любого конечного количества несовместных событий. Однако, в случае бесконечного (счётного или несчётного элементарных событий этого условия оказывается недостаточно. Требуется так называемая счётная или сигма-аддитивность, то есть выполнение свойства аддитивности для любого не более чем счётного семейства попарно несовместных событий. Это необходимо для обеспечения «непрерывности» вероятностной меры.

Вероятностная мера может быть определена не для всех подмножеств множества {\displaystyle X}X. Предполагается, что она определена на некоторой сигма-алгебре {\displaystyle \Omega }\Omega  подмножеств[6]. Эти подмножества называются измеримыми по данной вероятностной мере и именно они являются случайными событиями. Совокупность {\displaystyle (X,\Omega ,P)}(X,\Omega ,P) — то есть множество элементарных событий, сигма-алгебра его подмножеств и вероятностная мера — называется вероятностным Свойства вероятности

Основные свойства вероятности проще всего определить, исходя из аксиоматического определения вероятности.

1) вероятность невозможного события (пустого множества {\displaystyle \varnothing }\varnothing ) равна нулю:

{\displaystyle \mathbf {P} \{\varnothing \}=0;}{\mathbf  {P}}\{\varnothing \}=0;

Это следует из того, что каждое событие можно представить как сумму этого события и невозможного события, что в силу аддитивности и конечности вероятностной меры означает, что вероятность невозможного события должна быть равна нулю.

2) если событие A включается («входит») в событие B, то есть {\displaystyle A\subset B}A\subset B, то есть наступление события A влечёт также наступление события B, то:

{\displaystyle \mathbf {P} \{A\}\leqslant \mathbf {P} \{B\};}{\mathbf  {P}}\{A\}\leqslant {\mathbf  {P}}\{B\};

Это следует из неотрицательности и аддитивности вероятностной меры, так как событие {\displaystyle B}B, возможно, «содержит» кроме события {\displaystyle A}A ещё какие-то другие события, несовместные с {\displaystyle A}A.

3) вероятность каждого события {\displaystyle A}A находится от 0 до 1, то есть удовлетворяет неравенствам:

{\displaystyle 0\leqslant \mathbf {P} \{A\}\leqslant 1;}0\leqslant {\mathbf  {P}}\{A\}\leqslant 1;

Первая часть неравенства (неотрицательность) утверждается аксиоматически, а вторая следует из предыдущего свойства с учётом того, что любое событие «входит» в {\displaystyle X}X, а для {\displaystyle X}X аксиоматически предполагается {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

4) вероятность наступления события {\displaystyle B\setminus A}B\setminus A, где {\displaystyle A\subset B}A\subset B, заключающегося в наступлении события {\displaystyle B}B при одновременном ненаступлении события {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{B\setminus A\}=\mathbf {P} \{B\}-\mathbf {P} \{A\};}{\mathbf  {P}}\{B\setminus A\}={\mathbf  {P}}\{B\}-{\mathbf  {P}}\{A\};

Это следует из аддитивности вероятности для несовместных событий и из того, что события {\displaystyle A}A и {\displaystyle B\setminus A}B\setminus A являются несовместными по условию, а их сумма равна событию {\displaystyle B}B.

5) вероятность события {\displaystyle {\bar {A}}}{\bar  {A}}, противоположного событию {\displaystyle A}A, равна:

{\displaystyle \mathbf {P} \{{\bar {A}}\}=1-\mathbf {P} \{A\};}{\mathbf  {P}}\{{\bar  {A}}\}=1-{\mathbf  {P}}\{A\};

Это следует из предыдущего свойства, если в качестве множества {\displaystyle B}B использовать всё и учесть, что {\displaystyle \mathbf {P} \{X\}=1}{\mathbf  {P}}\{X\}=1.

6) (теорема сложения вероятностей) вероятность наступления хотя бы одного из (то есть суммы) произвольных (не обязательно несовместных) двух событий {\displaystyle A}A и {\displaystyle B}B равна:

{

4,8(100 оценок)
Ответ:
Guppy2016
Guppy2016
21.01.2020

Современность ставит свои требования и к сфере туризма, детально: это модернизация системы сферы услуг, увеличение качества и видов обслуживания туристов, а также выход на принципиально новый уровень инновационности.

Сфера туризма изо всех сил пытается адаптироваться под современные требования. Сформировался эко-туризм, когда отдыхающим предлагается возможность наблюдения за животными, живущими в естественной среде обитания, Туристы, осуществляя свой отдых в специализированных бунгало, как можно меньше нанося вред дикой природе.
Весьма популярен, стал отдых на частных виллах, путешествия на частных самолетах.
Аналитики по туризму предполагают, что совместный отдых членов одной семьи приобретает все большую популярность. Это вектор, который уже получил название «совместное», ожидается, что интенсивно он будет развиваться в дальнейшей перспективе. Это связано с тем, что некоторым людям больше времени хочется быть со своей семьей.

4,8(28 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ