М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mrlolik1500
mrlolik1500
02.08.2022 08:04 •  Математика

Периметр равнобедренного треугольника равен 48 см найдите его стороны если боковая сторона в 2 раза больше основания

👇
Ответ:
Дейлионна
Дейлионна
02.08.2022
Пусть x-основание, тогда 2x-боковые стороны
Мы знаем, что боковые стороны равнобедренного треугольника равны
Также мы знаем периметр этого треугольника, он равен 48 см
Составим уравнение:
х+2х+2х=48
5х=48 
х=48/5
х=9,6
ответ:9,6.
т.е. у нас получится основание-9,6 см, а каждая боковая сторона-9,6*2=19,2см
4,7(76 оценок)
Открыть все ответы
Ответ:
kulanforever
kulanforever
02.08.2022
ДУМАЕМ
1)Догонят из-за разности скоростей.
2) Второму надо проехать больше - третий за 15 минут уедет.
РЕШАЕМ
Время встречи первого - догнал третьего.
t(1,3) = S / (V1-V3) = 30/(15-9) = 5 часов - 
Переводим 15 мин = 0,25 часа.
Вычисляем путь третьего за  0,25 часа
S3 = V3*t3 = 9*0.25 = 2.25 км.
Время встречи встречи второго - догнал третьего
t(2,3) = (S +S3)/(V2-V3) =(30+2.25)/(15-9) = 5.375 час = 5 час 22.5 мин.
Интервал будет в 22.5 мин. - УРА!, но не правильно.
ДУМАЕМ ещё сильнее.
НАДО найти ИНТЕРВАЛ времени, который возник из-за разности путей после разного времени старта t3=15 мин за счет разности скоростей 15-9.
РЕШАЕМ В ОДНО УРАВНЕНИЕ.
dT= (V3*t3) / (V2-V3) = 9*0.25/(15-9) = 9/6*0.75= 0.375 час = 22,5 мин.
Вот это ПРАВИЛЬНОЕ решение 
4,6(70 оценок)
Ответ:
nasa21p08m1i
nasa21p08m1i
02.08.2022

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.  

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

4,6(40 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ