AC=10 см
Пошаговое объяснение:
Розв'язання:
Нехай дано ∆АВС, МК - серединний перпендикуляр до сторони АВ,
т. М належить сторон!і ВС, ВС = 16 см, Р∆АМС = 26 см. Знайдемо сторону АС.
Розглянемо ∆АМК i ∆BMK.
1) АК = KB (т. К - середина АВ);
2) ∟AКM = ∟BKM = 90° (МК ┴ АВ);
3) MК - спільна.
Отже, ∆АМК = ∆BMК за I ознакою, з цього випливає, що AM = MB.
Р∆АМС = АС + АМ + СМ (т.я. АМ = МВ, то Р∆АМС = АС + МВ + СМ).
26 = АС + MB + CM, MB + СМ = СВ = 16 см.
26 = АС + 16; АС = 26 - 16; АС = 10 см.
Biдповідь: AC = 10 см.
Обозначим медиану,проведенную из вершины В к основанию, ВК.
Медианы треугольника пересекаются в точке,которая называется центроидом(или центром тяжести треугольника) и делятся этой точкой в отношении 2:1,считая от вершины.Значит, ВО:ОК=2:1 ; ОК=10:2=5(см)
В равнобедренном треугольнике медиана ВК,проведенная к основанию,является биссектрисой и высотой,поэтому треуг.АОК-прямоугольный.
В треуг.АОК :
АО=13см-гипотенуза
ОК=5см-катет
АК-?см -катет
АК2=АО2-ОК2 (теор. Пифагора)
АК2=13 * 13 - 5 * 5 = 144
АК=корень из 144
АК=12(см)
Sтреуг=1/2 ah
Sтреуг.АВС=1/2 AC*ВК
АК=1/2 АС
Sтреуг АВС = АК * ОК= 12 *15 = 180(cм2)