М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Крейми51
Крейми51
05.03.2022 10:26 •  Математика

Построить график функции y = 2*∛(x²) * e^(-x/3) по следующему алгоритму: 1) область определения функции 2) непрерывность функции и её четность(lim y =? при x-> +- ∞) 3) пересечение с осями координат и точки разрыва (найти точки разрыва с пределов) 4) асимптоты (вертикальные и наклонные, найти их через пределы) 5) возрастание, убывание, экстремумы функции(через достаточные условия) 6) выпуклость, вогнутость и перегибы графика 7) построить сам график со всеми асимптотами

👇
Ответ:
gerasimenkocatia
gerasimenkocatia
05.03.2022
Дано:
y = \sqrt[3]{x^2} e^{ -\frac{x}{3} } ;

Исследовать функцию и построить график.

Решение:

1) Функция определена при любых аргументах.

D(f) ≡ R ≡ ( -\infty ; +\infty ) ;

2) Функция не является ни чётной, ни нечётной. Докажем это:

y(-x) = \sqrt[3]{ (-x)^2 } e^{ -\frac{-x}{3} } = \sqrt[3]{ x^2 } e^{ \frac{x}{3} } ;

y(-x)/y(x) = \frac{ \sqrt[3]{ x^2 } \exp{ \frac{x}{3} } }{ \sqrt[3]{ x^2 } \exp{ ( -\frac{x}{3} ) } } = \frac{ \exp{ \frac{x}{3} } }{ \exp{ -\frac{x}{3} } } = \exp{ \frac{x}{3} } \exp{ \frac{x}{3} } = \exp{ \frac{2x}{3} } ≠ ± 1 при любых аргументах ;

y(-x)/y(x) ≠ ± 1 ;

Найдём первую производную функции y(x) :

y'(x) = ( \sqrt[3]{x^2} e^{ -\frac{x}{3} } )' = ( x^\frac{2}{3} e^{ -\frac{x}{3} } )' = \frac{2}{3} x^{ -\frac{1}{3} } e^{ -\frac{x}{3} } + x^\frac{2}{3} ( -\frac{1}{3} ) e^{ -\frac{x}{3} } =

= \frac{ e^{ -\frac{x}{3} } }{3} ( \frac{2}{x^\frac{1}{3} } - x^\frac{2}{3} ) = \frac{ e^{ -\frac{x}{3} } }{ 3 x^{1/3} } ( 2 - x ) ;

y'(x) = \frac{ e^{ -\frac{x}{3} } }{ 3 \sqrt[3]{x} } ( 2 - x ) ;

При x = 0, производная y'(x) – не определена, хотя сама функция определена при любых аргументах, так что функция непрерывна на всей числовой прямой, но непрерывно-дифференцируема за исключением ноля.

Убедимся в этом, вычислив предел около ноля слева и справа

\lim_{x \to -0} y(x) = \lim_{x \to -0} \sqrt[3]{x^2} e^{ \frac{x}{3} } = \sqrt[3]{ (-0)^2 } e^{ -\frac{-0}{3} } = \sqrt[3]{0} e^{0} = 0*1 = 0 ;

\lim_{x \to +0} y(x) = \lim_{x \to +0} \sqrt[3]{x^2} e^{ \frac{x}{3} } = \sqrt[3]{ (+0)^2 } e^{ -\frac{0}{3} } = \sqrt[3]{0} e^{0} = 0*1 = 0 ;

3) Функция определена при любых x, поэтому точек разрыва нет.

Если приравнять функцию к нолю, получим:

y(x) = 0 ;

\sqrt[3]{x^2} e^{ \frac{x}{3} } = 0 ;

Что возможно только при \sqrt[3]{x^2} = 0 , т.е. при x = 0 ;

Итак, точка ( 0 ; 0 ) – принадлежит нашему графику.

4. Найдем асимптоты y(x).

Точек разрыва нет, значит, нет и вертикальных асимптот.

Посмотрим, что происходит с функцией y(x) при устремлении аргумента к ± \infty :

\lim_{x \to -\infty} y(x) = \lim_{x \to -\infty} \sqrt[3]{x^2} e^{ -\frac{x}{3} } = \lim_{x \to -\infty} e^{ \ln{ \sqrt[3]{x^2} } } e^{ -\frac{x}{3} } =

= \lim_{x \to -\infty} e^{ \frac{2}{3} \ln{ (-x) } } e^{ \frac{-x}{3} } = \lim_{x \to -\infty} e^{ \frac{2}{3} \ln{ (-x) } + \frac{-x}{3} } =

= \lim_{x \to -\infty} e^{ \frac{-x}{3} ( 1 + \frac{ 2 \ln{ (-x) } }{ -x } ) } \lim_{x \to -\infty} e^{ \frac{-x}{3} } = +\infty ;

\lim_{x \to -\infty} y(x) = +\infty ;

\lim_{x \to +\infty} y(x) = \lim_{x \to +\infty} \sqrt[3]{x^2} e^{ -\frac{x}{3} } = \lim_{x \to +\infty} e^{ \ln{ \sqrt[3]{x^2} } } e^{ -\frac{x}{3} } =

= \lim_{x \to +\infty} e^{ \frac{2}{3} \ln{x} } e^{ -\frac{x}{3} } = \lim_{x \to +\infty} e^{ \frac{2}{3} \ln{x} - \frac{x}{3} } =

= \lim_{x \to +\infty} e^{ -\frac{x}{3} ( 1 - \frac{ 2 \ln{x} }{x} ) } < \lim_{x \to +\infty} e^{ -\frac{x}{3} } \leq 0 ;

Поскольку, \lim_{x \to +\infty} y(x) \geq 0 , то:

\lim_{x \to +\infty} y(x) = 0 ;

Значит, уходя на отрицательную бесконечность аргумента y(x) и сама стремиться к бесконечности, а уходя на положительную бесконечно по аргументу y(x) стремится к нулю ;

Из этого следует, что при x>0 есть горизонтальная асимптота y = 0 .

Чтобы найти наклонную асимптоту, найдем предел первой производной на отрицательной бесконечности по аргументу:

\lim_{x \to -\infty} y'(x) = \lim_{x \to -\infty} \frac{ e^{ -\frac{x}{3} } }{ 3 \sqrt[3]{x} } ( 2 - x ) \lim_{x \to -\infty} \frac{ e^{ -\frac{x}{3} } }{ 3 \sqrt[3]{x} } ( - x ) ;

\lim_{x \to -\infty} \frac{ e^{ -\frac{x}{3} } }{ 3 \sqrt[3]{x} } ( - x ) = \lim_{x \to -\infty} ( -\frac{1}{3} \sqrt[3]{x^2} e^{ -\frac{x}{3} } ) = -\infty – по доказанному в пределе самой функции .

\lim_{x \to -\infty} y'(x) = -\infty ;

А это означает, что наклонной асимптоты на отрицательной бесконечности нет. А на положительной – горизонтальная.

Построить график функции y = 2*∛(x²) * e^(-x/3) по следующему алгоритму: 1) область определения функ
Построить график функции y = 2*∛(x²) * e^(-x/3) по следующему алгоритму: 1) область определения функ
Построить график функции y = 2*∛(x²) * e^(-x/3) по следующему алгоритму: 1) область определения функ
4,4(25 оценок)
Открыть все ответы
Ответ:
елена251178
елена251178
05.03.2022
Длина окружности обозначается буквой C и вычисляется по формуле: С=2*Пи*R.
С1=2*3,14*36=226,08 см
С2=2*3,14*0,44=2,76 см
С3=2*3,14*125=785 км
экватор Луны - это длина окружности. Диаметр D = R+R=2*R. Тогда D=С/Пи=10,9тыс.км / 3,14=10900 км / 3,14 = 3471 км.

С=2*Пи*R или С=D*Пи -> D=C/Пи
Вычисление длины второй окружности:
D1=3.5дм/3,14, D2=D1 * 5/7 = 3.5дм/3,14 * 2,5дм=0,796 дм

Площадь круга: S=Пи*D*D/4 (единица измерения - сантиметры квадратные).
D1=12см, D2=D1/2=12/2=6см, S2=3,14*D2*D2/4=3.14*6*6/4=28.26 см2.

150,88:(3,2*2,3)-60,27:(4,1*1,4)= 10
4,6(43 оценок)
Ответ:
kofpik
kofpik
05.03.2022
L=2\piR
L=2*3,14*36=226,08см
L=2*3,14*0,44=2,7632см
L=2*3,14*125=785км

L=\pi*D  D=L/\pi
D=10900:3,14=3471км

 L=\pi*D  D=L/\pi
D=35см:3,14=11,14см первый диаметр  11,14:7*5=7,96 второй диаметр
L=3,14*7,96=24,99см длина второй окруж.
                                                                                                                                  S = π · D² / 4    S =3,14(12*12/4) =113см2    S=3,14(6*6/4)=28,27см2

150,88:(3,2*2,3)-60,27:(4,1*1,4)
3,2*2,3=7,36
4,1*1,4=5,74
150,88:7,36=20,5
60,27:5,74=10,5
20,5-10,5=10
4,8(41 оценок)
Это интересно:
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ