Пусть R — радиус шара. Сопоставим каждой большой грани часть граничной сферы шара, расположенную в конусе, вершиной которого служит центр шара, а основанием — проекция шара на эту грань. Указанная часть сферы является «сферической шапочкой» (то есть частью сферы, лежащей по одну сторону от секущей сферу плоскости) высоты . По известной формуле площадь такой «шапочки» равна . Так как указанные «шапочки» не перекрываются, сумма их площадей не превосходит площади сферы. Обозначив количество больших граней через n, получим , то есть . Решение заканчивается проверкой того, что . Примечание. Легко видеть, что у куба шесть больших граней. Поэтому приведенная в задаче оценка числа больших граней является точной.
Определим какой угол нужно найти. Так как MA - перпендикуляр, то MA перпендикярна AD, AD перпендикулярна AC, значит по теореме о трех перпендикулярах DM перпендикулярна AC. Значит надо найти угол MDA. Из прямоугольного треугольника ABC: AB = CD = 2, BC = AD = 2^(1/2) Тогда по теореме Пифагора AC^2 = AB^2 + BC^2 => AC^2 = 4 + 2 = 6 => AC = 6^(1/2) Из прямоугольного треугольника MAC: AC = 6^(1/2), MCA = 30 (угол между прямой МС и плоскостью ABCD равен углу между прямой МС и проекцией МС на плоскость, для этого проводим перпендикуляр, опущенный из точки М на плоскость, то есть МА, тогда проекцией будет АС, а угол между МС и АС, это и есть угол АСМ) tg MCA = MA/AC => MA = tg MCA * AC MA = tg 30 * 6^(1/2) = 3^(1/2)/3 * 6^(1/2) = 18^(1/2)/3 = 2^(1/2) Из прямоугольного треугольника MAD: AD = 2^(1/2), AM = 2^(1/2) tg MDA = MA/AD = 2^(1/2)/2^(1/2) = 1 Значит MDA = 45
56 /
_18 /8026
14
_ 42
42
0