Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть определять положение и перемещение точки или тела с чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
В математике координаты — совокупность чисел, сопоставленных точкам многообразия в некоторой карте определённого атласа.
В элементарной геометрии координаты — величины, определяющие положение точки на плоскости и в На плоскости положение точки чаще всего определяется расстояниями от двух прямых (координатных осей), пересекающихся в одной точке (начале координат) под прямым углом; одна из координат называется ординатой, а другая — абсциссой. В по системе Декарта положение точки определяется расстояниями от трёх плоскостей координат, пересекающихся в одной точке под прямыми углами друг к другу, или сферическими координатами, где начало координат находится в центре сферы.
В географии координаты выбираются как (приближённо) сферическая система координат — широта, долгота и высота над известным общим уровнем (например, океана). См. Географические координаты.
В астрономии небесные координаты — упорядоченная пара угловых величин (например, прямое восхождение и склонение), с которых определяют положение светил и вс точек на небесной сфере. В астрономии употребляют различные системы небесных координат. Каждая из них по существу представляет собой сферическую систему координат (без радиальной координаты) с соответствующим образом выбранной фундаментальной плоскостью и началом отсчёта. В зависимости от выбора фундаментальной плоскости система небесных координат называется горизонтальной (плоскость горизонта), экваториальной (плоскость экватора), эклиптической (плоскость эклиптики) или галактической (галактическая плоскость).
Наиболее используемая система координат — прямоугольная система координат (также известная как декартова система координат).
Координаты на плоскости и в можно вводить бесконечным числом разных Решая ту или иную математическую или физическую задачу методом координат, можно использовать различные координатные системы, выбирая ту из них, в которой задача решается проще или удобнее в данном конкретном случае. Известным обобщением системы координат являются системы отсчёта и
Пошаговое объяснение:
ДАНО
Y= x³ - 3x
ИССЛЕДОВАНИЕ
1. Область допустимых значений - Х∈(-∞;+∞) или X∈R
Функция непрерывная - разрывов нет.
2. Точки пересечения с осью Х
Y = x*(x² - 3)
x1 = 0, x2 = - √3, x3 = √3.
3. точка пересечения с осью У.
Y(0) = 0.
4. Y(-x) = - x³ + 3x = -Y(x) - Функция нечетная.
5. Первая производная.
Y'(x) = 3*x² - 3 = 3*(x-1)(x+1)
6. Локальные экстремумы
Ymax(-1) = 2 - максимум
Ymin(1) = -2 - минимум
7. Монотонность.
Возрастает - Х∈(-∞;-1]∪[1;+∞)
Убывает - X∈[-1;1]
8. Вторая производная
Y"(x) = 6*x
9. Точка перегиба - Y"(x) = 0 при Х=0.
10. Выпуклая - X∈(-∞;0]
Вогнутая - X∈[0;+∞)
11. График прилагается
Поставь лучший ответ если не сложно
площадь: S=5\sqrt3a^2
объём: V=5/12 (3+\sqrt5)a^3