М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Настя34565688
Настя34565688
15.02.2020 15:59 •  Математика

Докажите,что функция f(x) является первообразной для функции f(x),если: а)f(x)=x^3+4x^2-5x+7 и f(x)=3x^2+8x-5,x€r

👇
Ответ:
Denis12121210
Denis12121210
15.02.2020
Для доказательства того, что функция f(x) является первообразной для функции f(x)=x^3+4x^2-5x+7, нужно показать, что производная функции f(x) равна функции f(x). Если это верно, то f(x) является первообразной для f(x).

Итак, начнем с вычисления производной функции f(x). Производная, обозначаемая f'(x), представляет собой функцию, которая показывает скорость изменения исходной функции.

Для данной функции f(x) = x^3 + 4x^2 - 5x + 7, мы вычисляем производную следующим образом:

f'(x) = 3x^2 + 8x - 5.

Теперь нужно проверить, действительно ли f'(x) равна функции f(x). Для этого мы должны убедиться, что f'(x) = f(x).

Сравнивая выражение для f'(x) и f(x), видим, что коэффициенты при каждом члене совпадают. Это означает, что f(x) действительно является первообразной для f(x)=x^3+4x^2-5x+7.

Таким образом, мы успешно доказали, что функция f(x) = x^3 + 4x^2 - 5x + 7 является первообразной для функции f(x) = 3x^2 + 8x - 5.
4,8(30 оценок)
Ответ:
linovanex
linovanex
15.02.2020
F'(x)=(x³+4x²-5x+7)'=3x²+8x-5=f(x)
4,8(91 оценок)
Проверить ответ в нейросети
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ