М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
maestro27568
maestro27568
26.08.2022 01:25 •  Математика

Скоротити дроби : (24a^6 b^4)/( 16a^3 b^7 )

👇
Ответ:
6hh6h6h
6hh6h6h
26.08.2022

3a^3 / 2b^3

Пошаговое объяснение:

24 и 16 сокращается на 8 (24/8=3, 16/8=2)

а^6 и a^3 сокращается на a^3 (а^6/a^3=a^3, a^3/a^3=1)

b^4 и b^7 сокращается на b^4 (b^7/b^4=b^3, b^4/b^4=1)

4,4(3 оценок)
Ответ:
Uliana44441
Uliana44441
26.08.2022

ответ: \frac{3a^3}{2b^3}.

\frac{24a^6b^4}{16a^3b^7} = \frac{8*3a^3a^3b^4}{8*2a^3b^4b^3} = \frac{3a^3}{2b^3}.

4,5(26 оценок)
Открыть все ответы
Ответ:
Ови11
Ови11
26.08.2022
Приведем данную гиперболу к каноническому виду:
2x^2-9y^2=18
x^2/9-y^2/2=1
x^2/3^2-y^2/(sqrt(2))^2=1       (примечание: sqrt - квадратный корень)
Найдем вершины гиперболы:
y=0
x^2/9=1
x^2=9
x1=3       x2=-3
точки (-3;0) и (3;0) - вершины гиперболы
Найдем уравнение окружности, проходящей через точки (-3;0), (3;0) с центром в точке А(0;4):
уравнение окружности с центром в точке (0;0) имеет вид x^2+y^2=R^2 (R - радиус окружности)
центр заданной окружности смещен вдоль оси y вверх на 4, т.к. точка А имеет координаты (0;4):
x^2+(y+4)^2=R^2
По теореме Пифагора найдем радиус окружности:
R=sqrt((3-0)^2+(4-0)^2)=sqrt(9+16)=sqrt(25)=5

x^2+(y+4)^2=25 - уравнение заданной окружности.
4,8(21 оценок)
Ответ:
kristinaлсп
kristinaлсп
26.08.2022
Приведем данную гиперболу к каноническому виду:
2x^2-9y^2=18
x^2/9-y^2/2=1
x^2/3^2-y^2/(sqrt(2))^2=1       (примечание: sqrt - квадратный корень)
Найдем вершины гиперболы:
y=0
x^2/9=1
x^2=9
x1=3       x2=-3
точки (-3;0) и (3;0) - вершины гиперболы
Найдем уравнение окружности, проходящей через точки (-3;0), (3;0) с центром в точке А(0;4):
уравнение окружности с центром в точке (0;0) имеет вид x^2+y^2=R^2 (R - радиус окружности)
центр заданной окружности смещен вдоль оси y вверх на 4, т.к. точка А имеет координаты (0;4):
x^2+(y+4)^2=R^2
По теореме Пифагора найдем радиус окружности:
R=sqrt((3-0)^2+(4-0)^2)=sqrt(9+16)=sqrt(25)=5

x^2+(y+4)^2=25 - уравнение заданной окружности.
4,7(57 оценок)
Новые ответы от MOGZ: Математика
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ