Одним из наиболее мощных методов интегрирования является замена переменной в интеграле. Поясним суть этого метода. Пусть F'(x)=f(x), тогда
\int f(x)\,dx= \int F'(x)\,dx= \int d\bigl(F(x)\bigr)=F(x)+C.
Но в силу инвариантности формы дифференциала равенство d\bigl(F(x)\bigr)=F'(x)\,dx= f(x)\,dx остается справедливым и в случае, когда {x} — промежуточный аргумент, т.е. x=\varphi(t). Это значит, что формула \textstyle{\int f(x)\,dx=F(x)+C} верна и при x=\varphi(t). Таким образом,
\int f\bigl(\varphi(t)\bigr)\,d\bigl(\varphi(t)\bigr)= F\bigl(\varphi(t)\bigr)+C, или \int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= F\bigl(\varphi(t)\bigr)+C.
Итак, если F(t) является первообразной для f(x) на промежутке {X}, а x=\varphi(t) — дифференцируемая на промежутке {T} функция, значения которой принадлежат {X}, то F\bigl(\varphi(t)\bigr) — первообразная для f\bigl(\varphi(t)\bigr)\varphi'(t),~t\in T, и, следовательно,
\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt= \int f(x)\,dx\,.
Эта формула позволяет свести вычисление интеграла \textstyle{\int f\bigl(\varphi(t)\bigr)\varphi'(t)\,dt} к вычислению интеграла \textstyle{\int f(x)\,dx}. При этом мы подставляем вместо \varphi(t) переменную {x}, а вместо \varphi'(t)\,dt дифференциал этой переменной, т. е. dx. Поэтому полученная формула называется формулой замены переменной под знаком неопределенного интеграла. Она используется на практике как "слева направо", так и "справа налево". Метод замены переменной позволяет сводить многие интегралы к табличным. После вычисления интеграла \textstyle{\int f(x)\,dx} надо снова заменить {x} на \varphi(t).
Пример 1. Вычислим \int\cos2t\,dt.
Решение. Введем новую переменную {x}, положив 2t=x. Тогда 2\,dt=dx,~dt=\frac{1}{2}\,dx и, следовательно,
\int\cos2t\,dt= \int\cos{x}\,\frac{1}{2}\,dx= \frac{1}{2}\int\cos{x}\,dx= \frac{1}{2}\sin{x}+C= \frac{1}{2}\sin2t+C.
Замечание. Вычисление короче записывают так:
\int\cos2t\,dt= \frac{1}{2}\int\cos2t\,d(2t)= \frac{1}{2}\sin2t+C.
Пошаговое объяснение:
1.А) Уравнением называется равенство, содержащее одно или несколько неизвестных, значение которых необходимо найти.
2. верный ответ Значение переменной, при котором уравнение обращается в верное равенство.
среди предложенных не нашел.
3. линейным называют уравнение, в котором переменная /или переменные/ входят в первой степени, не равны нулю. можем еще так сказать
это уравнение вида ах+b=c
ax+by=c , где a, b, c - некоторые числа, х и у -переменные. причем а≠0, если речь об уравнении с двумя переменными, то а≠0;b≠0.
4. квадратное - это уравнение вида ах²+bx+c=0, где а,b,с - некоторые числа, причем а≠0, х и у-переменные.
5. Неравенство вида ах+b<0 (ах+b≤0, ах+b>0, ах+b≥0).где а≠0.
6. А) Уравнение имеет два равных действительных корня. но при условии, что решаем уравнение в области действительных чисел. иначе ответ Е.
7. А) Уравнение имеет два различных действительных корня. если речь о решении кв. уравнения в области действительных чисел.
иначе ответ Е.
8. А) Уравнение не имеет действительных корней.
9.D=b²-4ас
10. А) Уравнения, имеющие одно и то же множество решений
11. 7х-8=2х-3⇒А)х=1
12. 3-4х=5+8х⇒12х=-2, х=-1/6, верного ответа нет.
13. 7-х=-4+10х; х=1
14. 4х-4=6+3х⇒А)х=10
15. А) -0.5
16. 7-3х-3=х-1⇒А)1.25
17. -15+3х=2х-19⇒А)-4
18. 3-2х<5-3х⇒А) x<2
19. 5х+6>3х-2⇒А) x>-4
20. 3х-5≥23-4х⇒А) x≥4
21. По Виету А) 4;-2
22. 3х²-2х-1=0−1
здесь два ответа . ноль и 2/3
23. у=х+1 целая прямая ответов. подходят А, С,
24.- нет системы
25.аналогично.
26. аналогично
27 нет
28. 10х²-х+1=0 А) Не имеет действительных корней
29 нет уравнения
30нет неравенства. но больше половины, как требуют правила, я решил вам.
bb
а)Число 1 является делителем любого натурального числа
б)Кратным натуральному числу а называют натуральное число,которое делиться без остатка на а
в)Любое натуральное число имеет бесконечное множество кратных
Вроде так))