1.Найдите координаты центра (2;-3;0) и радиус сферы R=5, 2.Напишите уравнение сферы радиуса R = 7 с центром в точке A(2; 0; -1).
3.Лежит ли точка А(-2; 1; 4) на сфере, заданной уравнением (x+2)2+(y-1)2+(z-3)2=1. , значит точка А(-2; 1; 4) Лежит на сфере, заданной уравнением (x+2)2+(y-1)2+(z-3)2=1. 4.Если точки А и В принадлежат сфере, то любая точка отрезка АВ не может принадлежать этой сфере, АВ - это хорда, и только две точки - А и В - принадлежат этой сфере 5.В этом задании "Могут ли все вершины прямоугольного треугольника с катетами 4 см и 2 см лежать на сфере радиуса см?" не указан радиус сферы. Однако, если все вершины прямоугольного треугольника с катетами 4 см и 2 см и гипотенузой √(16+4)=√20 лежат на сфере, то 2R≥√20, т е R≥√20 /2. Если радиус будет известен на вопрос ответишь сам 6.Формула площади круга: 7. - уравнение окружности координаты центра (3;0;0) и радиус окружности R=3
Рассмотрим событие А - из наугад выбранной урны будет извлечён белый шар. Это может произойти в результате следующих предположений: B₁ - будет выбрана 1-я урна В₂ - будет выбрана 2-я урна В₃ - будет выбрана 3-я урна Так как урны выбирают наугад, то выбор любой из них равновозможен, поэтому вероятность выбора шара из этих урн равна P(B₁)=P(B₂)=P(B₃)=1/3 Далее. В первой урне 3 белых шара + 1 чёрный = 4 шара. Вероятность извлечения белого шара, если будет выбрана первая урна P₁=3/4 Во второй урне 6 белых + 4 черных = 10 шаров. Вероятность извлечения белого шара, если будет выбрана вторя урна P₂=6/10=3/5 В третьей урне 9 белых + 1 чёрный = 10 шаров. Вероятность извлечения белого шара, если будет выбрана третья урна Р₃=9/10 По формуле полной вероятности Р(А)=P(B₁)*P₁+P(B₂)*P₂+P(B₃)*P₃=1/3*3/4+1/3*3/5+1/3*9/10= =1/4+1/5+3/10=3/4
1-это х т
х=15*5/2=75/2т